4.2实际问题的函数建模

,第 2 课时 利用二次函数解决与最大值或最小值有关的实际问题知识要点分类练 夯实基础知识点 1 利用二次函数解决与最大值或最小值有关的实际问题1一小球被抛出后,距离地面的高度 h(米) 和飞行时间 t(秒)满足函数表达式h5(t 1) 2 6,则小球距离地面的最大高度是 ( )A1 米 B 5 米

4.2实际问题的函数建模Tag内容描述:

1、第 2 课时 利用二次函数解决与最大值或最小值有关的实际问题知识要点分类练 夯实基础知识点 1 利用二次函数解决与最大值或最小值有关的实际问题1一小球被抛出后,距离地面的高度 h(米) 和飞行时间 t(秒)满足函数表达式h5(t 1) 2 6,则小球距离地面的最大高度是 ( )A1 米 B 5 米 C6 米 D7 米2竖直向上发射的小球的高度 h(m)关于运动时间 t(s)的函数表达式为 hat 2bt,其图象如图 1510 所示若小球在发射后第 2 秒与第 6 秒时的高度相等,则下列时刻中小球的高度最高的是( )图 1510A第 3 秒 B第 3.5 秒 C第 4.2 秒 D第 6.5 秒3若销售一种服装。

2、建立一次函数模型解决预测类型的实际问题教学目标:1在具体情境中,分析变量间的关系,抽象出一次函数模型并会运用所建立的模型进行预测;(重点)2根据数据确定一次函数的表达式(重点)教学过程:一、情境导入“脚印专家”根据脚印的大小,能够推测出罪犯的身高,这是符合科学的科学家们测量了许多人的身高和脚印长度之后,得出了从脚印长度推算身高的公式:身高(厘米)脚印长度(厘米)6.876.在我们的生活中还有很多这样运用到一次函数模型的例子,今天我们将要学习一次函数模型在生活中的应用二、合作探究探究点:建立一次函数模型解决预测类型。

3、30.4 二次函数的应用,导入新课,讲授新课,当堂练习,课堂小结,第2课时 实际问题中二次函数的最值问题,第三十章 二次函数,学习目标,1.分析实际问题中变量之间的二次函数关系.(难点) 2. 能应用二次函数的性质解决图形中最大面积问题.(重点) 3.能应用二次函数的性质解决商品销售过程中的最大利润问题.(重点) 4.弄清商品销售问题中的数量关系及确定自变量的取值范围. (难点),导入新课,情境引入,思考:在日常生活中存在着许许多多的与数学知识有关的实际问题.解决生活中面积的实际问题时,你会用到了什么知识?商品买卖过程中,作为商家追。

4、专题三实际问题中函数图象的分析(2019南岸区校级模拟)小亮和小明在同一直线跑道AB上跑步小亮从AB之间的C地出发,到达终点B地停止运动,小明从起点A地与小亮同时出发,到达B地休息20秒后立即以原速度的1.5倍返回C地并停止运动,在返途经过某地时小明的体力下降,并将速度降至3米/秒跑回终点C地,结果两人同时到达各自的终点在跑步过程中,小亮和小明均保持匀速,两人距C地的路程和记为y(米),小亮跑步的时间记为x(秒),y与x的函数关系如图所示,则小明在返途中体力下降并将速度降至3米/秒时,他距C地还有_米【分析】如解图,可按五个阶段分。

5、第2课时利用二次函数求实际问题中的最值知识点 1面积的最值1.已知一个直角三角形的两直角边长之和为20 cm,设一条直角边长为x cm,则另一条直角边长为 cm,则这个直角三角形的面积S=cm2,当x= cm时,这个直角三角形的面积最大,为 cm2.2.如图30-4-11,在ABC中,C=90,AB=10 cm,BC=8 cm,点P从点A沿AC向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s的速度运动(点Q运动到点B时,两点同时停止运动),在运动过程中,四边形PABQ的面积的最小值为()图30-4-11A.19 cm2 B.16 cm2C.12 cm2 D.15 cm23.教材习题A组第1题变式 某中学课外兴趣活动小组准备围。

6、5.5第1课时利用二次函数解决实际问题中的最值问题知识点1利用二次函数解决实际问题中的最值问题1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件,则商店所获得的利润y(元)与每件商品售价x(元)之间的函数表达式为()A.y=-10x2-560x+7350 B.y=-10x2+560x-7350C.y=-10x2+350x D.y=-10x2+350x-73502.某产品的进货单价为每件90元,按100元一件出售时,每周能售出500件.若每件涨价1元,则每周销售量就减少10件,则该产品每周能获得的最大利润为()A.5000元 B.8000元C.9000元 D.10000元3.2019。

7、第3课时根据二次函数的函数值解决实际问题知识点根据二次函数的函数值解决问题考查角度1根据二次函数的函数值解决实际问题1.在一定的条件下,若物体运动的路程s(米)与时间t(秒)之间的函数表达式为s=5t2+2t,则当t=4时,该物体所运动的路程为()A.28米 B.48米 C.68米 D.88米2.已知某种礼炮离地面高度h(m)与飞行时间t(s)之间的函数表达式是h=-52t2+20t+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A.3 s B.4 s C.5 s D.6 s3.一人乘雪橇沿如图30-4-17所示的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)之间的函数表达式为s=10t+t2.若滑到坡。

8、26.2 实际问题与反比例函数,第二十六章 反比例函数,导入新课,讲授新课,当堂练习,课堂小结,第1课时 实际问题中的反比例函数,学习目标,1. 体会数学与现实生活的紧密联系,增强应用意识, 提高运用代数方法解决问题的能力. 2. 能够通过分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步提高运用函数的图象、性质的综合能力. (重点、难点) 3. 能够根据实际问题确定自变量的取值范围,导入新课,情境引入,请欣赏成都拉面小哥的“魔性”舞姿,拉面小哥舞姿妖娆,手艺更是精湛. 如果他要把体积为 15 cm3 的面团做成拉面,你能写出。

9、2 实际问题的函数建模,第四章 函数应用,学习目标 1.了解什么是函数模型,知道函数的一些基本模型. 2.学会对收集到的相关数据进行拟合,并建立适当的数学模型. 3.学会运用常见的函数模型来解一些简单的实际问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 实际问题的函数刻画,思考 世界上很多事物间的联系可以用函数刻画,在试图用函数刻画两个变量的联系时,需要关注哪些要点?,答案 先确定两个变量是谁;再看两个变量之间的对应关系是否满足函数定义;如果满足,就要考虑建立函数关系式.,梳理 设自变量为x,函数为y,并用x。

10、2实际问题的函数建模学习目标1.了解什么是函数模型,知道函数的一些基本模型.2.学会对收集到的相关数据进行拟合,并建立适当的数学模型.3.学会运用常见的函数模型来解一些简单的实际问题.知识点一实际问题的函数刻画设自变量为x,函数为y,并用x表示各相关量,然后根据问题的已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为数学问题,实现问题的数学化,即所谓建立数学模型.知识点二用函数模型解决实际问题用函数模型解决实际问题的步骤:(1)审题:弄清题意,分清条件和结论,理顺数量关系,用。

11、2实际问题的函数建模一、选择题1.在股票买卖过程中,经常用到两种曲线:一种是即时价格曲线yf(x),另一种是平均价格曲线yg(x).例如,f(2)3是指开始买卖2小时的即时价格为3元;g(2)3是指开始买卖2小时内的平均价格为3元.下图给出的四个图像中,实线表示yf(x),虚线表示yg(x),其中可能正确的是()考点函数拟合问题题点函数拟合问题答案C解析开始时平均价格与即时价格一致,排除A,D;平均价格不能一直大于即时价格,排除B.2.某商场出售一种商品,每天可卖1 000件,每件可获利4元.据经验,若这种商品每件每降价0.1元,则比降价前每天可多卖出。

12、2实际问题的函数建模基础过关1某种细胞分裂时,由1个分裂成2个,2个分裂成4个,现有2个这样的细胞,分裂x次后得到细胞的个数y与x的函数关系是()Ay2x By2x1 Cy2x Dy2x1解析分裂一次后由2个变成2222个,分裂两次后4223个,分裂x次后y2x1个答案D2某厂日产手套的总成本y(元)与手套日产量x(副)的关系为y5x4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为()A200副 B400副 C600副 D800副解析由5x4 00010x,得x800,即日产手套至少800副才不亏本答案D3某种商品零售价2015年比2014年上涨25%,欲控制2016年比2014年上涨10%,则2。

【4.2实际问题的函数建模】相关PPT文档
【4.2实际问题的函数建模】相关DOC文档
标签 > 4.2实际问题的函数建模[编号:128165]