4.4单位圆的对称性与诱导公式(一) 一、选择题 1cos 600的值为() A. B. C D 答案D 解析cos 600cos(360240)cos 240 cos(18060)cos 60. 2sin(390)的值为() A. B C. D 答案D 解析sin(390)sin(36030)si
3.2.3 诱导公式一 学案含答案Tag内容描述:
1、4.4单位圆的对称性与诱导公式(一)一、选择题1cos 600的值为()A. B. C D答案D解析cos 600cos(360240)cos 240cos(18060)cos 60.2sin(390)的值为()A. B C. D答案D解析sin(390)sin(36030)sin(30)sin 30.3下列三角函数中,与sin数值相同的是()sin;cos;sin;cos;sin(nZ)A BC D答案C4sin(2)cos(42)化简的结果为()Asin 2cos 2 B1C2sin 2 D2sin 2答案A解析原式sin 2cos 。
2、 1.3 三角函数的诱导公式三角函数的诱导公式(一一) 一、选择题 1sin 315 sin(480 )cos(330 )的值为( ) A.1 2 B 1 2 C 2 2 D. 2 2 考点 同名诱导公式 题点 诱导公式一、二、三、四 答案 C 解析 原式sin(360 45 )sin(360 120 )cos(360 30 ) sin 45 sin 60 cos 30 2 2 3 2 3 。
3、5.35.3 诱导公式诱导公式 第第 1 1 课时课时 诱导公式诱导公式 一一 课时对点练课时对点练 1sin 1 290 等于 A32 B12 C.12 D.32 答案 B 解析 sin 1 290 sin3360 210 sin 210。
4、 1.3 三角函数的诱导公式三角函数的诱导公式(一一) 基础过关 1已知 sin()1 3,则 sin(2 017)的值为( ) A2 2 3 B2 2 3 C1 3 D1 3 解析 由 sin()sin 得 sin 1 3,所以 sin(2 017) sin()2 016sin()sin()sin 1 3 答案 D 2若 sin(110 )a,则 tan 70 等于( ) A a 1a2 B 。
5、4.4单位圆的对称性与诱导公式(二)学习目标1.掌握诱导公式1.131.14的推导,并能应用它解决简单的求值、化简与证明问题.2.对诱导公式1.81.14能作综合归纳,体会出七组公式的共性与个性,培养由特殊到一般的数学推理意识和能力.3.继续体会知识的“发生”“发现”过程,培养研究问题、发现问题、解决问题的能力知识点一的诱导公式对任意角,有下列关系式成立:sincos ,cossin (1.13)sincos ,cossin (1.14)诱导公式1.131.14的记忆:,的正(余)弦函数值,等于的余(正)弦三角函数值,前面加上一个把看成锐角时原函数值的符号,记忆口诀为“函数。
6、1.2.4诱导公式(一)一、选择题1.cos 600的值为()A. B. C. D.答案D解析cos 600cos(360240)cos 240cos(18060)cos 60.2.tan 690的值为()A. B. C. D.答案A解析tan 690tan(360330)tan 330tan(36030)tan 30.3.若cos(),2,则sin(2)等于()A. B. C. D.答案D解析由cos(),得cos ,故sin(2)sin (为第四象限角).4.化简sin2()cos()cos()1的值为()A.1 B.2sin。
7、 1.3 三角函数的诱导公式三角函数的诱导公式(二二) 学习目标 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题. 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与个性,培养由特殊到一般的 数学推理意识和能力 知识点一 诱导公式五 诱导公式五 sin 2 cos , cos 2 sin . 知识点二 诱导公式六 诱导公式六 sin 2 cos , 。
8、4.4单位圆的对称性与诱导公式(一)学习目标1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关的诱导公式解决一些三角函数的求值、化简和证明问题知识点2k,的诱导公式对任意角,有下列关系式成立:sin(2k)sin ,cos(2k)cos (1.8)sin()sin ,cos()cos (1.9)sin(2)sin , cos(2)cos (1.10)sin()sin ,cos()cos (1.11)sin()sin ,cos()cos (1.12)公式1.81.12叫作正弦函数、余弦函数的诱导公式这五组诱导公式的记忆口诀是“函数名不变,符号看象限”其含义是诱导公式两边的函数名称一致,符号则是将看成锐角时原角。
9、1 5.3 诱导公式诱导公式 第第 1 课时课时 公式二公式三和公式四公式二公式三和公式四 学 习 目 标 核 心 素 养 1.了解公式二公式三和公式四的推导方法 2 能够准确记忆公式二 公式三和公式四 重点易混点 3掌握公式二公式三和公式。
10、第2课时诱导公式(五六)学习目标1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题.2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与个性,培养由特殊到一般的数学推理意识和能力.3.继续体会知识的“发生”“发现”过程,培养研究问题、发现问题、解决问题的能力知识点一诱导公式五诱导公式五sincos cossin 知识点二诱导公式六诱导公式六sincos cossin 知识点三诱导公式的推广与规律1sincos ,cossin ,sincos ,cossin .2诱导公式记忆规律:公式一四归纳:2k(kZ),的三角函数值,等于角的同名三角函数值,。
11、1 第第 2 课时课时 公式五和公式六公式五和公式六 学 习 目 标 核 心 素 养 1.了解公式五和公式六的推导方法 2能够准确记忆公式五和公式六重点易混点 3灵活运用诱导公式进行三角函数式的化简求值和证明难点 1.借助诱导公式求值,培养。
12、 1.3 三角函数的诱导公式三角函数的诱导公式(一一) 学习目标 1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用 有关诱导公式解决一些三角函数的求值、化简和证明问题 设角 的终边与单位圆的交点为 P,由三角函数定义知 P 点坐标为(cos ,sin ) 知识点一 诱导公式二 角 的终边与角 的终边关于原点对称,角 的终边与单位圆的交点 P1与 P 也关于 原点对。
13、5.35.3 诱导公式诱导公式 1.借助单位圆,推导出正弦余弦和正切的诱导公式; 2.能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值化简和恒等式证明问题; 3.了解未知到已知复杂到简单的转化过程,培养学生的化。
14、5.3 5.3 诱导公式诱导公式 1.借助单位圆,推导出正弦余弦第二三四五六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值化简和恒等式证明问题 2.通过公式的应用,了解未知到已知复杂到简单的转化。
15、1.2.3三角函数的诱导公式第1课时诱导公式(一四)学习目标1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题设角的终边与单位圆的交点为P,由三角函数定义知P点坐标为(cos ,sin )知识点一诱导公式一终边相同的角的同一三角函数值相等即有诱导公式一sin(2k)sin cos(2k)cos tan(2k)tan ,其中kZ知识点二诱导公式二角的终边与角的终边关于x轴对称,角的终边与单位圆的交点P1与P也关于x轴对称,因此点P1的坐标是(cos ,sin ),它们的三角函数关系如下:诱导公式二si。
16、1.2.4诱导公式(二)学习目标1.掌握诱导公式(四)的推导,并能应用解决简单的求值、化简与证明问题.2.对诱导公式(一)至(四),能作综合归纳,体会出四组公式的共性与个性,培养由特殊到一般的数学推理意识和能力.3.继续体会知识的“发生”、“发现”过程,培养研究问题、发现问题、解决问题的能力.知识点一角与的三角函数间的关系诱导公式(四)cossin ,sincos . 由三角函数之间的关系可得:tancot ,cottan .知识点二角与的三角函数间的关系以替代公式(四)中的,可得到诱导公式(四)的补充:cossin ,sincos ,tancot ,cottan .特别提醒:的正。
17、1.2.4诱导公式(一)学习目标1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题.知识点一角与k2(kZ)的三角函数间的关系诱导公式(一)cos(k2)cos (kZ),sin(k2)sin (kZ),tan(k2)tan (kZ).知识点二角与的三角函数间的关系诱导公式(二)cos()cos ,sin()sin ,tan()tan .知识点三角与(2k1)(kZ)的三角函数间的关系诱导公式(三)cos(2k1)cos (kZ),sin(2k1)sin (kZ),tan(2k1)tan (kZ).特别提醒:公式一三都叫做诱导公式,他们分别反映了2k(kZ),(2k1)(kZ)的三角函数值。
18、3.2.3诱导公式(一)基础过关1如果,满足,那么下列式子中正确的个数是()sinsin;sinsin;coscos;coscos.A1 B2C3D4答案B解析,sinsin()sin,coscos()cos,正确的是.2sin585的值为()A B.CD.答案A3若n为整数,则代数式的化简结果是()AtanBtanCtanD.tan答案C4若cos(),2,则sin(2)等于()A. BC.D答案D解析由cos(),得cos,故sin(2)sin (为第四象限角)5tan(5)m,则的值为()A.B.C1D1。
19、3.2.3诱导公式(二)学习目标1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题.2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与个性,培养由特殊到一般的数学推理意识和能力.3.继续体会知识的“发生”、“发现”过程,培养研究问题、发现问题、解决问题的能力知识链接12k(kZ),的三角函数值,等于的同名函数值,前面加上一个把看成锐角时原函数值的符号简记为“函数名不变,符号看象限”2在直角三角形中,根据正弦、余弦的定义有sin,cos,sin,cos.根据上述结论,你有什么猜想?答sincos;cossin.3若为任。
20、3.2.3诱导公式(一)学习目标1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题知识链接1对于任意一个角,与它终边相同的角的集合应如何表示?答所有与终边相同的角,连同在内,可以构成一个集合:S|k360,kZ,即任何一个与角终边相同的角,都可以表示成角与整数个周角的和2设为任意角,则2k,2,的终边与的终边之间的对称关系.相关角终边之间的对称关系2k与终边相同与关于原点对称与关于x轴对称2与关于x轴对称与关于y轴对称预习导引1诱导公式一四(其中kZ)(1)公。