31.2 两角和与差的正弦两角和与差的正弦、余弦余弦、正切公式正切公式(二二) 学习目标 1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式.2.能利用两 角和与差的正切公式进行化简、求值、证明.3.熟悉两角和与差的正切公式的常见变形,并能 灵活应用 知识点一 两角和与差的正切公式 名称
3.2.3 诱导公式二 学案含答案Tag内容描述:
1、31.2 两角和与差的正弦两角和与差的正弦、余弦余弦、正切公式正切公式(二二) 学习目标 1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式.2.能利用两 角和与差的正切公式进行化简、求值、证明.3.熟悉两角和与差的正切公式的常见变形,并能 灵活应用 知识点一 两角和与差的正切公式 名称 简记符号 公式 使用条件 两角和的正切 T() tan() tan tan 1tan tan。
2、31.3 二倍角的正弦二倍角的正弦、余弦余弦、正切公式正切公式 学习目标 1.会用两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式. 2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用 知识点一 二倍角公式 sin 22sin cos ; cos 2cos2sin22cos2112sin2; tan 2 2tan 1tan2 2k,2 2k,kZ . 知识。
3、 4.2 同角三角函数基本关系式及诱导公式同角三角函数基本关系式及诱导公式 最新考纲 考情考向分析 1.理解同角三角函数的基本关系式:sin2x cos2x1,sin x cos xtan x.2.能利用单位圆中 的三角函数线推导出 2 , 的正弦、余 弦、正切的诱导公式. 考查利用同角三角函数的基本关系、 诱导公式解 决条件求值问题, 常与三角恒等变换相结合起到 化简三角函数关系的作用, 强调利用三角公式进 行恒等变形的技能以及基本的运算能力 题型为 选择题和填空题,低档难度. 1同角三角函数的基本关系 (1)平方关系:sin2cos21. (2)商数关系:sin cos tan 。
4、1.31.3 三角函数的诱导公式三角函数的诱导公式( (二二) ) 一、选择题 1已知 cos 1 4,则 sin 2 等于( ) A.1 4 B 1 4 C. 15 4 D 15 4 考点 异名诱导公式 题点 诱导公式六 答案 A 解析 sin 2 cos 1 4. 2已知 sin 1 5,则 cos(450 )的值是( ) A.1 5 B1 5 C2 6 5 D.2 6 5 .。
5、第第 2 2 课时课时 诱导公式诱导公式 二二 课时对点练课时对点练 1已知 sin 25.3 a,则 cos 64.7 等于 Aa Ba Ca2 D. 1a2 答案 A 解析 cos 64.7 cos90 25.3 sin 25.3 a.。
6、 1.3 三角函数的诱导公式三角函数的诱导公式(二二) 基础过关 1已知 sin 1 4,则 cos( 2)( ) A1 4 B1 4 C 15 4 D 15 4 解析 cos( 2)sin 1 4 答案 B 2若 sin(180 )cos(90 )a,则 cos(270 )2sin(360 )的值是( ) A2 3a B3 2a C2 3a D3 2a 解析 由条件得sin sin a,故 s。
7、4.4单位圆的对称性与诱导公式(二) 基础过关1若sin(3),则cos()等于()AB. C.D解析sin(3)sin ,sin ,cos()cos()cos()sin .答案A2已知sin,则cos的值等于()AB.C D.解析cossinsinsin.答案A3若sin()cosm,则cos2sin(2)的值为()AB.C D.解析sin()cossin sin m,sin .故cos2sin(2)sin 2sin 3sin m.答案C4已知sin ,则cos()的值为_解析cos()sin .答案5化简:_.解析原式sin .答案sin 6已知角终边经过点。
8、4.4单位圆的对称性与诱导公式(一)学习目标1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关的诱导公式解决一些三角函数的求值、化简和证明问题知识点2k,的诱导公式对任意角,有下列关系式成立:sin(2k)sin ,cos(2k)cos (1.8)sin()sin ,cos()cos (1.9)sin(2)sin , cos(2)cos (1.10)sin()sin ,cos()cos (1.11)sin()sin ,cos()cos (1.12)公式1.81.12叫作正弦函数、余弦函数的诱导公式这五组诱导公式的记忆口诀是“函数名不变,符号看象限”其含义是诱导公式两边的函数名称一致,符号则是将看成锐角时原角。
9、1.2.4诱导公式(二)一、选择题1.已知cos ,则sin等于()A. B. C. D.答案A解析sincos .2.已知sin 10k,则cos 620的值为()A.k B.k C.k D.不确定答案B解析cos 620cos(360260)cos 260cos(27010)sin 10k.3.已知sin,则cos等于()A. B. C. D.答案B解析因为sin,所以coscossin.4.已知sin,则cos的值等于()A. B.C. D.答案A解析cossinsinsin.5.若sin(3),则cos等于()A. B. C. D.答案A解析sin(3)sin ,sin .。
10、 1.3 三角函数的诱导公式三角函数的诱导公式(一一) 学习目标 1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用 有关诱导公式解决一些三角函数的求值、化简和证明问题 设角 的终边与单位圆的交点为 P,由三角函数定义知 P 点坐标为(cos ,sin ) 知识点一 诱导公式二 角 的终边与角 的终边关于原点对称,角 的终边与单位圆的交点 P1与 P 也关于 原点对。
11、1.2.4诱导公式(二)基础过关1已知f(sinx)cos3x,则f(cos10)的值为()A B. C D.答案A解析f(cos10)f(sin80)cos240cos(18060)cos60.2已知sin,那么cos等于()A B C. D.答案C解析sincos.3已知sin,则cos的值等于()A B. C D.答案A解析cossinsinsin.4若sin()cosm,则cos2sin(2)的值为()A B. C D.答案C解析sin()cossinsinm,sin.故cos2sin(2)sin2sin3sinm.5。
12、4.4单位圆的对称性与诱导公式(二)学习目标1.掌握诱导公式1.131.14的推导,并能应用它解决简单的求值、化简与证明问题.2.对诱导公式1.81.14能作综合归纳,体会出七组公式的共性与个性,培养由特殊到一般的数学推理意识和能力.3.继续体会知识的“发生”“发现”过程,培养研究问题、发现问题、解决问题的能力知识点一的诱导公式对任意角,有下列关系式成立:sincos ,cossin (1.13)sincos ,cossin (1.14)诱导公式1.131.14的记忆:,的正(余)弦函数值,等于的余(正)弦三角函数值,前面加上一个把看成锐角时原函数值的符号,记忆口诀为“函数。
13、第2课时诱导公式(五六)学习目标1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题.2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与个性,培养由特殊到一般的数学推理意识和能力.3.继续体会知识的“发生”“发现”过程,培养研究问题、发现问题、解决问题的能力知识点一诱导公式五诱导公式五sincos cossin 知识点二诱导公式六诱导公式六sincos cossin 知识点三诱导公式的推广与规律1sincos ,cossin ,sincos ,cossin .2诱导公式记忆规律:公式一四归纳:2k(kZ),的三角函数值,等于角的同名三角函数值,。
14、1.2.3三角函数的诱导公式第1课时诱导公式(一四)学习目标1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题设角的终边与单位圆的交点为P,由三角函数定义知P点坐标为(cos ,sin )知识点一诱导公式一终边相同的角的同一三角函数值相等即有诱导公式一sin(2k)sin cos(2k)cos tan(2k)tan ,其中kZ知识点二诱导公式二角的终边与角的终边关于x轴对称,角的终边与单位圆的交点P1与P也关于x轴对称,因此点P1的坐标是(cos ,sin ),它们的三角函数关系如下:诱导公式二si。
15、 1.3 三角函数的诱导公式三角函数的诱导公式(二二) 学习目标 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题. 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与个性,培养由特殊到一般的 数学推理意识和能力 知识点一 诱导公式五 诱导公式五 sin 2 cos , cos 2 sin . 知识点二 诱导公式六 诱导公式六 sin 2 cos , 。
16、1.2.4诱导公式(一)学习目标1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题.知识点一角与k2(kZ)的三角函数间的关系诱导公式(一)cos(k2)cos (kZ),sin(k2)sin (kZ),tan(k2)tan (kZ).知识点二角与的三角函数间的关系诱导公式(二)cos()cos ,sin()sin ,tan()tan .知识点三角与(2k1)(kZ)的三角函数间的关系诱导公式(三)cos(2k1)cos (kZ),sin(2k1)sin (kZ),tan(2k1)tan (kZ).特别提醒:公式一三都叫做诱导公式,他们分别反映了2k(kZ),(2k1)(kZ)的三角函数值。
17、1.2.4诱导公式(二)学习目标1.掌握诱导公式(四)的推导,并能应用解决简单的求值、化简与证明问题.2.对诱导公式(一)至(四),能作综合归纳,体会出四组公式的共性与个性,培养由特殊到一般的数学推理意识和能力.3.继续体会知识的“发生”、“发现”过程,培养研究问题、发现问题、解决问题的能力.知识点一角与的三角函数间的关系诱导公式(四)cossin ,sincos . 由三角函数之间的关系可得:tancot ,cottan .知识点二角与的三角函数间的关系以替代公式(四)中的,可得到诱导公式(四)的补充:cossin ,sincos ,tancot ,cottan .特别提醒:的正。
18、3.2.3诱导公式(一)基础过关1如果,满足,那么下列式子中正确的个数是()sinsin;sinsin;coscos;coscos.A1 B2C3D4答案B解析,sinsin()sin,coscos()cos,正确的是.2sin585的值为()A B.CD.答案A3若n为整数,则代数式的化简结果是()AtanBtanCtanD.tan答案C4若cos(),2,则sin(2)等于()A. BC.D答案D解析由cos(),得cos,故sin(2)sin (为第四象限角)5tan(5)m,则的值为()A.B.C1D1。
19、3.2.3诱导公式(一)学习目标1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题知识链接1对于任意一个角,与它终边相同的角的集合应如何表示?答所有与终边相同的角,连同在内,可以构成一个集合:S|k360,kZ,即任何一个与角终边相同的角,都可以表示成角与整数个周角的和2设为任意角,则2k,2,的终边与的终边之间的对称关系.相关角终边之间的对称关系2k与终边相同与关于原点对称与关于x轴对称2与关于x轴对称与关于y轴对称预习导引1诱导公式一四(其中kZ)(1)公。
20、3.2.3诱导公式(二)学习目标1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题.2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与个性,培养由特殊到一般的数学推理意识和能力.3.继续体会知识的“发生”、“发现”过程,培养研究问题、发现问题、解决问题的能力知识链接12k(kZ),的三角函数值,等于的同名函数值,前面加上一个把看成锐角时原函数值的符号简记为“函数名不变,符号看象限”2在直角三角形中,根据正弦、余弦的定义有sin,cos,sin,cos.根据上述结论,你有什么猜想?答sincos;cossin.3若为任。