2020年中考数学必考专题12

1 知识精要知识精要 二次函数的综合应用,涉及待定系数法、一次函数的性质、二次函数的性质、全等三角形的判定和性 质、相似三角形的判定和性质、等腰三角形的性质与判定、直角三角形的性质与判定、三角形的面积、方 程思想及分类讨论思想等知识。 要点突破要点突破 1.熟练掌握待定系数法求函数的解析式 2.

2020年中考数学必考专题12Tag内容描述:

1、 1 知识精要知识精要 二次函数的综合应用,涉及待定系数法、一次函数的性质、二次函数的性质、全等三角形的判定和性 质、相似三角形的判定和性质、等腰三角形的性质与判定、直角三角形的性质与判定、三角形的面积、方 程思想及分类讨论思想等知识。 要点突破要点突破 1.熟练掌握待定系数法求函数的解析式 2. 是认真分析,弄清解题的思路和方法. 3. 会运用分类讨论的思想解决数学问题. 典例精讲典例精讲 例 。

2、(精品资料)(精品资料) 20202020 年中考数学压轴题突破年中考数学压轴题突破专题八专题八 方方 案设计型问题案设计型问题 类型一 【利用不等式(组)设计方案】 【典例指引 1】光明小区房屋外墙美化工程工地有大量货物需要运输,某车队有载重量为 8 吨和 10 吨的卡 车共 15 辆,所有车辆运输一次能运输 128 吨货物 (1)求该车队载重量为 8 吨、10 吨的卡车各有多少辆? (2)随着工程的扩大,车队需要一次运输货物 170 吨以上,为了完成任务,车队准备增购这两种卡车共 5 辆(两种车都购买) ,请写出所有可能的购车方案 【举一反三】。

3、 专题专题 06 动点折叠类问题中图形存在性问题动点折叠类问题中图形存在性问题 一、基础知识点综述一、基础知识点综述 动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运 动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题, 更能体现其解题核心动中求静, 灵活运用相关数学 知识进行解答,有时需要借助或构造一些数学模型来解答. 实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分, 题型繁多,题意新颖,具有创新力. 其主。

4、 1 二、抛物线与等腰三角形二、抛物线与等腰三角形 4如图,直线与 x 轴、y 轴分别交于点 B、C,对称轴为的抛物线经过 B、C 两点,与 x 轴的另一个交点为 A,顶点为 D、点 P 是该抛物线上的一个动点,过点 P 作轴于点 E,分别交线段 BD、BC 于点 F、G,设点 P 的横坐标为 求该抛物线所对应的函数关系式及顶点 D 的坐标; 求证:; 当为等腰三角形时,求 t 的值 【答案。

5、 1 知识精要知识精要 1.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方:cba 22 2.勾股定理的逆定理:如果三角形的三边长a、b、c有下面关系: 222 cba,那么这个三角形是直角 三角形 要点突破要点突破 1.根据实际情况构造出直角三角形,用未知数表示出三边长度,根据勾股定理列出方程. 2.建立数学模型,将实际问题运用数学思想进行求解 典例精讲典例精讲 例 1如图是一面。

6、(精品资料)(精品资料)20202020 年中考数学压轴题突破年中考数学压轴题突破专题七专题七 几何几何 图形动点运动问题图形动点运动问题 类型一 【探究动点运动过程中线段之间的数量关系】 【典例指引 1】在 ABC 中,ACB45 ,点 D 为射线 BC 上一动点(与点 B、C 不重合) ,连接 AD,以 AD 为一边在 AD 右侧作正方形 ADEF (1)如果 ABAC,如图 1,且点 D 在线段 BC 上运动,判断BAD CAF(填“”或“”) ,并证 明:CFBD (2)如果 ABAC,且点 D 在线段 BC 的延长线上运动,请在图 2 中画出相应的示意图,此时(1)中的结 论是否成立?。

7、专题三实际应用题类型一 二元一次方程组的应用 (5年2考)(2019济宁模拟)用彩色和单色的两种地砖铺地,彩色地砖14元/块,单色地砖12元/块,若单色地砖的数量比彩色地砖的数量的2倍少15块,买两种地砖共用了1 340元,设购买彩色地砖x块,单色地砖y块,则根据题意可列方程组为 【分析】根据“单色地砖的数量比彩色地砖的数量的2倍少15块,买两种地砖共用了1 340元”,即可得出关于x,y的二元一次方程组【自主解答】1(2019德州中考)孙子算经中有一道题,原文是:“今有木,不知长短引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意。

8、专题四几何综合题类型一 几何的全等综合 (5年2考)(2017济宁中考)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想MBN的度数是多少,并证明你的结论(2)将图1中的三角形纸片BMN剪下,如图2.折叠该纸片,探究MN与BM的数量关系写出折叠方案,并结合方案证明你的结论【分析】(1)猜想:MBN30.只要证明ABN是等边三角形即可(2)结论:MNBM.折纸方案:过M点折叠BMN,使得点N落在BM上O处,折痕为MP,连接OP.由折叠。

9、 1 知识精要知识精要 1.一般地,形如ykxb (k,b 为常数,0k )的函数,叫做一次函数。 2.一次函数 y=kx+b(k0)的性质:当 k0,图象经过第二、四象限,y 随 x 的增大而减小;当 k0, 经图象第一、三象限,y 随 x 的增大而增大;当 b0,一次函数的图象与 y 轴的交点在 x 轴上方;当 b0, 一次函数的图象与 y 轴的交点在 x 轴下方 3.一次方程(组) 、一元一。

10、 1 19把厚度相同的字典整齐地叠放在桌面上,已知字典顶端离地高度与字典本数成一次函数,根据图 中所示的信息: (1)若设有 x 本字典叠成一摞放在这张桌面上,字典的离地高度为 y(cm) , 求 y 与 x 的关系式; (2)每本字典的厚度为多少? 【答案】 (1)y=5x+85, (2)5cm. 20已知甲、乙两地相距 90km,A,B 两人沿同一公路从甲地出发到乙地,A 骑摩托车,B 。

11、 1 知识精要知识精要 程序图(或数值转换机)问题,是以程序图为载体,考查学生有理数的计算、代数式求值、一元一次 方程的应用、探索规律等知识点此类题无论在期中、期末测试还是中考中,都是常出现的题型。下面简 介此类题的解题方法,以帮助同学们轻松地进行计算,从而提高运算能力,发展思维的敏捷性与灵活性。 要点突破要点突破 解决序图输入计算问题,关键是要正确根据程序图列式计算. 典例精讲典例精讲 例如图所。

12、(精品资料)(精品资料)20202020 年中考数学压轴题突破年中考数学压轴题突破专题四专题四 几何最值的存在性几何最值的存在性 问题问题 类型一 【确定线段(或线段的和,差)的最值或确定点的坐标】 【典例指引 1】 (2018 天津中考模拟)如图, 在平面直角坐标系中, 长方形 OABC 的顶点 A、C 分别在 x 轴、 y 轴的正半轴上点 B 的坐标为(8,4) ,将该长方形沿 OB 翻折,点 A 的对应点为点 D,OD 与 BC 交于点 E (I)证明:EO=EB; ()点 P 是直线 OB 上的任意一点,且 OPC 是等腰三角形,求满足条件的点 P 的坐标; ()点 M 是 OB。

13、 专题专题 09 动点类题目动点类题目图形图形最值问题探究最值问题探究 题型一:题型一:矩形中的相似求解矩形中的相似求解 例例 1.(2019绍兴)绍兴)如图,矩形 ABCD 中,AB=a,BC=b,点 M、N 分别在边 AB、CD 上,点 E、F 分 别在边 BC、AD 上,MN、EF 交于点 P. 记 k=MN:EF. (1)若 a:b 的值为 1,当 MNEF 时,求 k 的值. (2)若 a:b 的值为 2 1 ,求 k 的最大值和最小值. (3)若 k 的值为 3,当点 N 是矩形的顶点,MPE=60 ,MP=EF=3PE 时,求 a:b 的值. BC DA E M F N 【分析】 (1)当 a:b=1 时,可得四边形 ABCD 为正方形,。

14、 专题专题 10 动点类综合题目探究动点类综合题目探究 题型一:题型一:二次函数中三角形面积最值二次函数中三角形面积最值存存及平行四边形存及平行四边形存在性问题在性问题 例例 1. (2019 巴中) 巴中) 如图, 抛物线 2 5yaxbx(a0) 经过 x 轴上的点 A(1,0)和点 B 及 y 轴上的点 C, 经过 B、C 两点的直线为yxn. (1)求抛物线解析式; (2)动点 P 从点 A 出发,在线段 AB 上以每秒 1 个单位的速度向 B 运动,同时动点 E 从点 B 出发,在线段 BC 上以每秒 2 个单位的速度向 C 运动. 当其中一个点到达终点时, 另一点也停止运动. 设。

15、 1 11已知过原点,三点,则圆心 M 坐标为_ 【答案】 , , , 是直角三角形, 是外接圆的直径, 是 OB 的中点, , ; 故答案为: 12如图,一下水管道横截面为圆形,直径为 100cm,下雨前水面宽为 60cm,一场大雨过后,水面宽 为 80cm,则水位上升_cm 2 【答案】10 或 70 13如图:四边形 ABCD 内接于O,E 为 BC 延长。

16、 1 专题专题 08 动点类题目旋转问题探究动点类题目旋转问题探究 题型一:题型一:旋转旋转问题中问题中三点共线三点共线问题问题 例例 1 ( (2019绍兴)绍兴)如图 1 是实验室中的一种摆动装置,BC 在地面上,支架 ABC 是底边为 BC 的等腰 直角三角形,摆动臂 AD 可绕点 A 旋转,摆动臂 DM 可绕点 D 旋转,AD=30,DM=10. (1)在旋转过程中, 当 A、D、M 三点在同一直线上时,求 AM 的长. 当 A、D、M 三点为同一直角三角形的顶点时,求 AM 的长. (2) 若摆动臂 AD 顺时针旋转 90, 点 D 的位置由ABC 外的点 D1转到其内的点 D2处, 连接 。

17、 1 知识精要知识精要 一、垂直于弦的直径一、垂直于弦的直径 圆轴对称图形,经过圆心的每一条直线都是它的对称轴。垂径定理:垂直于弦的直径平分这条弦,并 且平分弦所对的两条弧。 推理 1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。弦的垂直平分线经过圆心,并 且平分弦所对的两条弧。 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。推理 2:圆两条平行弦所夹 的弧相。

18、 1 专题专题 10 动点类综合题目探究动点类综合题目探究 题型一:题型一:二次函数中三角形面积最值二次函数中三角形面积最值存存及平行四边形存及平行四边形存在性问题在性问题 例例 1. (2019 巴中) 巴中) 如图, 抛物线 2 5yaxbx(a0) 经过 x 轴上的点 A(1,0)和点 B 及 y 轴上的点 C, 经过 B、C 两点的直线为yxn. (1)求抛物线解析式; (2)动点 P 从点 A 出发,在线段 AB 上以每秒 1 个单位的速度向 B 运动,同时动点 E 从点 B 出发,在线段 BC 上以每秒 2 个单位的速度向 C 运动. 当其中一个点到达终点时, 另一点也停止运动. 。

19、专题二阅读理解问题类型一 定义新的运算 (5年2考) (2018德州中考)对于实数a,b,定义运算“”:ab例如43,因为43,所以435.若x,y满足方程组则xy_.【分析】根据二元一次方程组的解法以及新定义运算法则即可求出答案【自主解答】 定义新运算问题的实质是一种规定,规定某种运算方式,然后要求按照规定去计算、求值,解决此类问题的方法技巧是:(1)明白这是一种特殊运算符号,常用,&,等来表示一种运算;(2)正确理解新定义运算的含义,严格按照计算顺序把它转化为一般的四则运算,然后进行计算;(3)新定义的算式中,有括号的要先算括号里面。

20、2020中考数学培优专题:代数与代数式的规律探究(含答案)一、单选题(共有5道小题)1.一组数1,1,2,x,5,y,,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()A.8 B.9 C.13 D.152.观察下列关于x的单项式,探究其规律:按照上述规律,第2015个单项式是( )A.B.C.D.3.观察下列算式: ,请你在察规律之后并用你得到的规律填空:, 第n个式子呢? _4.请你计算:,猜想的结果是( )A B C D5.观察下列各式及其展开式请你猜想的展开式第三项的系数是( )A.36B.45C.55D.66二、填空题(共有16道小题)6.下表中的数。

【2020年中考数学必考专题12】相关DOC文档
标签 > 2020年中考数学必考专题12[编号:78541]