类比、拓展综合训练1.如图,在矩形 ABCD 中,AB16,BC 8,在 AD 边上取一点 E,使AE3,点 F 是 AB 边上的一个动点,以 EF 为一边作菱形 EFMN,使点N 落在 CD 上,点 M 落在矩形 ABCD 内或其边上,连接 BM.(1)当四边形 EFMN 是正方形时,求 AF
中考数学复习之规律探究Tag内容描述:
1、 类比、拓展综合训练1.如图,在矩形 ABCD 中,AB16,BC 8,在 AD 边上取一点 E,使AE3,点 F 是 AB 边上的一个动点,以 EF 为一边作菱形 EFMN,使点N 落在 CD 上,点 M 落在矩形 ABCD 内或其边上,连接 BM.(1)当四边形 EFMN 是正方形时,求 AF 的长;(2)设BFM 的面积为 S,AF x.写出 S 与 x 之间的函数关系式;在图、图中分别画出 S 取得最大值和最小值时相应的图形,当 S 由最大值变到最小值时,求点 M 运动的路线长第 1 题图解:(1)在正方形 EFMN 中,FEN90,EFEN ;DENAEF90,在矩形 ABCD 中,AD 90,AEF AFE90,DENAF。
2、 专题专题 07 动点折叠类问题中图形存在性动点折叠类问题中图形存在性及落点及落点“有迹性有迹性”问题问题 一、基础知识点综述一、基础知识点综述 动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运 动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题, 更能体现其解题核心动中求静, 灵活运用相关数学 知识进行解答,有时需要借助或构造一些数学模型来解答. 实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分, 题型繁多。
3、2021 年年中考中考数学二轮复习探索规律数学二轮复习探索规律-坐标变化规律专题突破训练坐标变化规律专题突破训练 1 在平面直角坐标系中, 小汪做走棋的游戏, 小汪的走法是: 棋子从原点出发, 第 1 步向右一个单位长度, 第 2 步向下走 2 个单位长度,第 3 步向右走 3 个单位长度,第 4 步向下走 4 个单位长度,第 5 步向右走 5 个单位长度, 第 6 步向下走 6 个单位长度, 依。
4、2021 年中考年中考数学数学二轮复习探索规律二轮复习探索规律-算式变化规律专题突破训练算式变化规律专题突破训练 1已知 1 1(0 1)axxx 且, 23 12 11 , 11 aa aa , 1 1 1 n n a a ,则 a2020 等于( ) Ax Bx+1 C 1 x D 1 x x 2根据等式: 2 111xxx, 23 111,xxxx 324 111xxxxx, 432。
5、2021 年年中考中考数学二轮复习探索规律数学二轮复习探索规律-数字变化规律专题突破训练数字变化规律专题突破训练 1 设一列数 1 a, 2 a, 3 a, , n a, 中任意三个相邻的数之和都是20, 已知 2 ax, 30 9ax, 92 4ax, 则 2021 a( ) A2 B5 C7 D11 2有一个数值转换器,远离如图所示,若开始输入 x 的值是 5,可发现第 1 次输出的结果是 1。
6、 专题专题 07 动点折叠类问题中图形存在性动点折叠类问题中图形存在性及落点及落点“有迹性有迹性”问题问题 一、基础知识点综述一、基础知识点综述 动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运 动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题, 更能体现其解题核心动中求静, 灵活运用相关数学 知识进行解答,有时需要借助或构造一些数学模型来解答. 实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分, 题型繁多。
7、2020中考数学培优专题:代数与代数式的规律探究(含答案)一、单选题(共有5道小题)1.一组数1,1,2,x,5,y,,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()A.8 B.9 C.13 D.152.观察下列关于x的单项式,探究其规律:按照上述规律,第2015个单项式是( )A.B.C.D.3.观察下列算式: ,请你在察规律之后并用你得到的规律填空:, 第n个式子呢? _4.请你计算:,猜想的结果是( )A B C D5.观察下列各式及其展开式请你猜想的展开式第三项的系数是( )A.36B.45C.55D.66二、填空题(共有16道小题)6.下表中的数。
8、20212021 寒假中考冲刺实验题专题复习(寒假中考冲刺实验题专题复习(1212) 探究串并联电流、电压规律实验和电阻大小影响因素实验探究串并联电流、电压规律实验和电阻大小影响因素实验 1.(2020 九上龙岗期末)在“探究并联电路中电流关系”实验中: (1)小明想测量通过灯泡 L1的电流,连接的电路如图中所示,其中有一根导线按错了,请你将错误的线打 “”,并画出正确的连线。 (2)正确连。
9、 专题专题 02 动点问题中的函数图象及规律探索问题动点问题中的函数图象及规律探索问题 一、基础知识点综述一、基础知识点综述 动点问题中函数图象的题目的解决方法是:先根据动点运动规律找出所求与动点运动之间的关系,进 而获取相应函数的解析式及函数值变化规律,达到求解的目的. 考查的重点是分段函数解析式的求解. 探索规律问题通常用归纳法,即从简单到复杂,从特殊到一般,这类题目考查的是学生的观察与归纳 能力,注意从特殊到一般的归纳方法. 二二、主要思想方法主要思想方法 分类讨论、数学归纳. 三三、精品例题解析精品例题解。
10、 专题专题 02 动点问题中的函数图象及规律探索问题动点问题中的函数图象及规律探索问题 一、基础知识点综述一、基础知识点综述 动点问题中函数图象的题目的解决方法是:先根据动点运动规律找出所求与动点运动之间的关系,进而获 取相应函数的解析式及函数值变化规律,达到求解的目的. 考查的重点是分段函数解析式的求解. 探索规律问题通常用归纳法,即从简单到复杂,从特殊到一般,这类题目考查的是学生的观察与归纳能力, 注意从特殊到一般的归纳方法. 二二、主要思想方法主要思想方法 分类讨论、数学归纳. 三三、精品例题解析精品例题解。
11、 专题专题 09 动点类题目动点类题目图形图形最值问题探究最值问题探究 题型一:题型一:矩形中的相似求解矩形中的相似求解 例例 1.(2019绍兴)绍兴)如图,矩形 ABCD 中,AB=a,BC=b,点 M、N 分别在边 AB、CD 上,点 E、F 分 别在边 BC、AD 上,MN、EF 交于点 P. 记 k=MN:EF. (1)若 a:b 的值为 1,当 MNEF 时,求 k 的值. (2)若 a:b 的值为 2 1 ,求 k 的最大值和最小值. (3)若 k 的值为 3,当点 N 是矩形的顶点,MPE=60 ,MP=EF=3PE 时,求 a:b 的值. BC DA E M F N 题型二:二次函数中几何图形最值求题型二:二次函数中几何。
12、 第 1 页 共 34 页 2020 年中考数学试题分类汇编之十五 新概念新规律题新概念新规律题 一、选择题 7.(2020河南)定义运算: 2 1mnmnmn 例如 2 :424 24 2 17 则 方程10 x 的根的情况为( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根 D. 只有一个实数根 【答案】A 【详解】解:根据定义得: 2 110,xxx 1,1。
13、第第 4 4 讲讲 规律探究阅读理解题型规律探究阅读理解题型 【方法梳理】 一.规律题型解题方法: “2+4” (1) “2”两种规律 若是周期性规律,从简单开始计算,直到找到“周期数”为止; 若是渐变式规律,一般只算“前三项”即可; (2) “4”四条找规律方法 求什么找什么的规律; 计算结果最好保留算式,尽量不约分化简; 寻找算式中的数字与序号之间的变化关系; 若是找坐标规律,先。
14、 专题专题 09 动点类题目动点类题目图形图形最值问题探究最值问题探究 题型一:题型一:矩形中的相似求解矩形中的相似求解 例例 1.(2019绍兴)绍兴)如图,矩形 ABCD 中,AB=a,BC=b,点 M、N 分别在边 AB、CD 上,点 E、F 分 别在边 BC、AD 上,MN、EF 交于点 P. 记 k=MN:EF. (1)若 a:b 的值为 1,当 MNEF 时,求 k 的值. (2)若 a:b 的值为 2 1 ,求 k 的最大值和最小值. (3)若 k 的值为 3,当点 N 是矩形的顶点,MPE=60 ,MP=EF=3PE 时,求 a:b 的值. BC DA E M F N 【分析】 (1)当 a:b=1 时,可得四边形 ABCD 为正方形,。
15、 专题专题 10 动点类综合题目探究动点类综合题目探究 题型一:题型一:二次函数中三角形面积最值二次函数中三角形面积最值存存及平行四边形存及平行四边形存在性问题在性问题 例例 1. (2019 巴中) 巴中) 如图, 抛物线 2 5yaxbx(a0) 经过 x 轴上的点 A(1,0)和点 B 及 y 轴上的点 C, 经过 B、C 两点的直线为yxn. (1)求抛物线解析式; (2)动点 P 从点 A 出发,在线段 AB 上以每秒 1 个单位的速度向 B 运动,同时动点 E 从点 B 出发,在线段 BC 上以每秒 2 个单位的速度向 C 运动. 当其中一个点到达终点时, 另一点也停止运动. 设。
16、 专题专题 08 动点类题目旋转问题探究动点类题目旋转问题探究 题型一:题型一:旋转旋转问题中问题中三点共线三点共线问题问题 例例 1 ( (2019绍兴)绍兴)如图 1 是实验室中的一种摆动装置,BC 在地面上,支架 ABC 是底边为 BC 的等腰 直角三角形,摆动臂 AD 可绕点 A 旋转,摆动臂 DM 可绕点 D 旋转,AD=30,DM=10. (1)在旋转过程中, 当 A、D、M 三点在同一直线上时,求 AM 的长. 当 A、D、M 三点为同一直角三角形的顶点时,求 AM 的长. (2) 若摆动臂 AD 顺时针旋转 90, 点 D 的位置由ABC 外的点 D1转到其内的点 D2处, 连接 D1。
17、 专题专题 10 动点类综合题目探究动点类综合题目探究 题型一:题型一:二次函数中三角形面积最值二次函数中三角形面积最值存存及平行四边形存及平行四边形存在性问题在性问题 例例 1. (2019 巴中) 巴中) 如图, 抛物线 2 5yaxbx(a0) 经过 x 轴上的点 A(1,0)和点 B 及 y 轴上的点 C, 经过 B、C 两点的直线为yxn. (1)求抛物线解析式; (2)动点 P 从点 A 出发,在线段 AB 上以每秒 1 个单位的速度向 B 运动,同时动点 E 从点 B 出发,在线段 BC 上以每秒 2 个单位的速度向 C 运动. 当其中一个点到达终点时, 另一点也停止运动. 设。
18、 专题专题 08 动点类题目旋转问题探究动点类题目旋转问题探究 题型一:题型一:旋转旋转问题中问题中三点共线三点共线问题问题 例例 1 ( (2019绍兴)绍兴)如图 1 是实验室中的一种摆动装置,BC 在地面上,支架 ABC 是底边为 BC 的等腰 直角三角形,摆动臂 AD 可绕点 A 旋转,摆动臂 DM 可绕点 D 旋转,AD=30,DM=10. (1)在旋转过程中, 当 A、D、M 三点在同一直线上时,求 AM 的长. 当 A、D、M 三点为同一直角三角形的顶点时,求 AM 的长. (2) 若摆动臂 AD 顺时针旋转 90, 点 D 的位置由ABC 外的点 D1转到其内的点 D2处, 连接 D1。
19、专题 一 规律探究问题1按照一定规律排列的 n 个数:2,4,8,16,32,64,若最后三个数的和为768,则 n 为( B )A9 B10 C11 D122(2018烟台)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为( C )A28 B29 C30 D313(2018临沂)一列自然数 0,1,2,3,100.依次将该列数中的每一个数平方后除以100,得到一列新数则下列结论正确的是( D )A原数与对应新数的差不可能等于零B原数与对应新数的差,随着原数的增大而增大C当原数与对应新数的差等于 21 时,原数等于 30D当原数取 50 。
20、安徽中考20142018 考情分析,说明:规律探究是安徽中考的必考内容之一,规律探究问题是指由几个具体结论通过类比、猜想、推理等一系列的数学思维过程,来探求一般性结论的问题,解决这类问题的一般思路是通过对所给的具体的结论进行全面、细致的观察、分析、比较,从中发现其变化的规律,并猜想出一般性的结论,然后再给出合理的证明或加以运用安徽中考每年对此类问题作重点考查,根据近几年考查的内容可以看出,其主要考查形式可分为:数、式规律探究和图形规律探索,预计2019年中考仍会考查规律探究的问题,核心考点精讲,类型一 数的归纳。