2020年人教版高考数学理科一轮练习第41讲数列的综合问题

第 60 讲 两直线的位置关系1一条光线从点(5,3)射入,与 x 轴正向成 角,遇 x 轴后反射,若 tan 3,则反射线所在的直线方程为(D)A. y3x12 B. y3x12C. y3 x12 D. y3x12反射线所在的直线过点(5,3) ,斜率 ktan 3,由点斜式得 y33( x5),

2020年人教版高考数学理科一轮练习第41讲数列的综合问题Tag内容描述:

1、第 60 讲 两直线的位置关系1一条光线从点(5,3)射入,与 x 轴正向成 角,遇 x 轴后反射,若 tan 3,则反射线所在的直线方程为(D)A. y3x12 B. y3x12C. y3 x12 D. y3x12反射线所在的直线过点(5,3) ,斜率 ktan 3,由点斜式得 y33( x5),即 y3x12.2(2017江西景德镇二模)若直线 l1:( m2)xy10 与直线 l2:3xmy 0 互相平行,则 m 的值等于(D)A. 0 或1 或 3 B0 或 3C0 或1 D1 或 3当 m0 时,两条直线方程分别化为 2xy10,3x 0,此时两直线不平行;当 m0 时,由于 l1l2,则 ,解得 m1 或 3.m 23 1m经检验满足条件综上,m1 或 3.3已知直线 l1:y 2x。

2、第 1 讲 集合的概念与运算1(2016 全国卷)设集合 Ax|x 24x30,则 AB(D)A(3, ) B(3, )32 32C(1, ) D( ,3)32 32(1)先化简集合 A,B,再利用交集定义求解因为 x24x30,所以 x ,所以32B x|x 32所以 AB x| 5所以 M(RN)R.(2)当 2a10,若 AB,则实数 c 的取值范围是(B)A(0,1 B 1,)C(0,1) D (1,)由 xx 20,得 00,得 0 .即点(2,1)Aa ,其等价命题为 a 点(2 ,1)A 成立,02332 32 3212(2019海南二校联考)某班共 30 人,其中 15 人喜爱篮球运动,10 人喜爱乒乓球运动,8 人对这两项运动都不喜爱,则喜爱乒乓球运动但不喜爱篮球运动的人数为_7_。

3、第 13 讲 函数与方程1一元二次方程 ax22x 10(a0)有一个正根和一个负根的充分不必要条件是(C)Aa0Ca1依题意,充要条件为Error!Error!所以 a0,23所以 x0(2,3),所以 g(x0)x 02.3(2018山东菏泽一中高三月考) 设函数 f(x)e x2x4,g( x)ln x2x 25,若实数a,b 分别是 f(x),g(x)的零点,则(A)Ag(a)0 ,且函数 f(x)是增函数,所以 f(x)的零点在(0,1)内,即 00,函数 g(x)的零点在(1,2)内,即 1f(1)0.又函数 g(x)在(0,1)内是增函数,因此, g(a)0)有一个零点,则1x x2 ax 1xa( B)A2 B1 C0 D2因为 f(x)2 x 2 (x a),1x 1x所以 f(x)f( ),所以若。

4、第 4 讲 函数及其表示1(2017江西九江七校联考) 函数 y 的定义域为(D)9 x2log2x 1A(1,3) B(1,3C(1,0)(0,3) D(1,0)(0,3由题意得Error!所以11 的 x 的取值范围是 12( , ) .14由题意知,可对不等式分 x0,0x ,x 三段讨论12 12当 x0 时,原不等式为 x1x 1,解得 x ,12 14所以 x0;14当 0x 时,原不等式为 2xx 1,显然成立;12 12当 x 时,原不等式为 2x2x 1,显然成立12 12综上可知,x .147已知 f(x)是二次函数,若 f(0)0,且 f(x1) f (x)x 1,求函数 f(x)的解析式设 f(x)ax 2bx c (a0),又 f(0)0,所以 c0,所以 f(x)ax 2bx.又因为 f(x1)f(x。

5、第 66 讲 曲线与方程1已知点 A( 2,0)、B(3,0),动点 P(x,y)满足 x 2,则点 P 的轨迹是(D)PA PB A圆 B椭圆C双曲线 D抛物线 (2x,y ), (3x,y),因为 x 2,所以(2x)(3x)PA PB PA PB y 2x 2,即 y2x 6.2已知 F1(1,0)、F 2(1,0),且|F 1F2|是|PF 1|与|PF 2|的等差中项,则动点 P 的轨迹是(A)A椭圆 B双曲线C抛物线 D线段由于|PF 1| PF2|2|F 1F2|42 ,所以 P 点轨迹为椭圆3曲线 f(x,y)0 关于直线 xy 20 对称曲线的方程是(D)Af(x 2,y) 0 Bf(x 2,y )0Cf(y2,x2)0 Df(y2,x 2) 0设(x 0,y 0)是 f(x,y )0 上任一点,它关于 xy20 的对称点为(x。

6、第 30 讲 正弦定理、余弦定理的综合应用1(2017淮北一中月考)在 ABC 中,两边的差为 2,两边夹角的余弦值为 ,且三角35形面积为 14,则这两边的长分别是(D)A3,5 B4,6C6,8 D5,7不妨设两边为 b,c (bc),则 bc2,cos A ,则 sin A ,所以 S35 45ABC bcsin A bc14.12 25所以 bc35.所以 b7,c 5.2(2019岳阳一模)在ABC 中,角 A,B,C 的对边分别为 a,b,c,若 cacos B(2ab)cos A,则ABC 的形状是(D)A等腰三角形 B直角三角形C等腰直角三角形 D等腰或直角三角形由正弦定理得:sin Csin Acos B(2sin Asin B )cos A,即 sin(AB )sin Acos B(2sin A。

7、第 82 讲 曲线的参数方程1(经典真题)已知动点 P,Q 都在曲线 C:Error!(t 为参数 )上,对应参数分别为 t与 t2 (00)(1)若曲线 C1 与曲线 C2 有一个公共点在 x 轴上,求 a 的值;(2)当 a3 时,曲线 C1 与曲线 C2 交于 A,B 两点,求 A,B 两点的距离(1)曲线 C1:Error! 的直角坐标方程为 y32x .曲线 C1 与 x 轴的交点为 ( ,0). 32曲线 C2:Error! 的直角坐标方程为 1. x2a2 y29曲线 C2 与 x 轴的交点为 (a,0),( a,0). 由 a0,曲线 C1 与曲线 C2 有一个公共点在 x 轴上,知 a . 32(2)当 a3 时,曲线 C2:Error! 为圆 x2y 29. 圆心到直线 y3。

8、第 63 讲 椭 圆1已知椭圆 1 的左、右焦点分别为 F1、F 2,M 是椭圆上的一点,N 是 MF1x216 y212的中点,若|ON| 1,则|MF 1|的长等于(C)A2 B4C6 D5因为|ON |1,所以|MF 2|2,又|MF 1|MF 2|8,所以|MF 1|6.选 C.2(2017江苏五校联考)一个椭圆中心在原点,焦点 F1,F 2 在 x 轴上,P(2, )是椭圆3上一点,且|PF 1|,| F1F2|,|PF 2|成等差数列,则椭圆方程为 (A)A. 1 B. 1x28 y26 x216 y26C. 1 D. 1x28 y24 x216 y24设椭圆的标准方程为 1(ab0) x2a2 y2b2由点(2, )在椭圆上知 1.34a2 3b2又|PF 1|, |F1F2|,|PF 2|成等差数列,则|PF 1| |PF2| 。

9、第 11 讲 幂函数1已知 f(x)x ,若 0ca Bcb aCbac Da bc因为若 x(e 1 ,1),所以1eln x0,所以 bc.12从而 bca.3.在同一直角坐标系中,函数 f(x)x a(x0),g(x) log ax 的图象可能是(D)因为 a0,且 a1,所以 f(x)x a 在(0,) 上单调递增,所以排除 A.当 01 时,B、C 中 f(x)与 g(x)的图象矛盾故选 D.4(2017河北武邑第三次调研) 已知定义在 R 上的奇函数 f(x)满足:当 x0 时,f (x)x 3,若不等式 f(4t)f(2m mt2)对任意实数 t 恒成立,则实数 m 的取值范围是(A)A(, ) B( ,0)2 2C(,0)( ,) D( , )( ,)2 2 2当 xf(2 mmt 2)对任意实数 t 恒成。

10、第 20 讲 导数的实际应用及综合应用1某商场销售某种商品的经验表明,该商品每日的销售量 y(单位:千克) 与销售价格x(单位:元 /千克 )满足关系式 y 10(x6) 2,其中 3x 6,a 为常数已知销售价格ax 3为 5 元/千克时,每日可售出该商品 11 千克(1)求 a 的值;(2)若该商品的成本为 3 元/ 千克,试确定销售价格 x 的值,使商场每日销售该商品所获得的利润最大(1)因为当 x5 时,y11,所以 10(56) 211,解得 a2.a5 3(2)由(1)知该商品每日的销售量 y 10(x6) 2(3x6),2x 3所以该商场每日销售该商品所获得的利润f(x) 10(x 6) 2(x3)210( x3)( x6) 2(3。

11、第 59 讲 直线的方程1若 xsin ycos 10 的倾斜角 是(C)7 7A. B.7 37C. D.67 514因为 ktan tan tan( )tan ,7 7 67所以 .672(2018绵阳南山中学月考) 若 A(2,3),B( 3, 2),直线 l 过点 P(1,1)且与线段 AB 相交,则 l 的斜率 k 的取值范围是(C)Ak 或 k Bk 或 k34 43 43 34C. k D k 34 43 43 34因为 A( 2,3) ,B(3,2),P(1,1) ,所以 kAP ,k BP , 3 1 2 1 43 2 1 3 1 34所以 k .34 433点 P(x,y)在以 A(3,1),B(1,0) ,C (2,0)为顶点的 ABC 的内部运动( 不包括边界),则 的取值范围是(D)y 2x 1A ,1 B( ,1)12 12C ,1 D( ,1)14 14的。

12、第 61 讲 圆的方程1圆(x 1) 2y 22 关于直线 xy10 对称的圆的方程是(C)A(x 1)2(y2) 2 B( x1) 2(y2) 212 12C(x1) 2( y2) 22 D( x1) 2(y2) 22圆心 (1,0)关于直线 xy 10 的对称点是( 1,2),所以圆的方程是(x1)2( y 2)22.2点 P(4, 2)与圆 x2y 24 上任一点连线的中点的轨迹方程是(A)A(x 2)2(y1) 21 B( x2) 2(y1) 24C(x4) 2( y2) 24 D( x2) 2(y1) 21设圆上任一点为 A(x1,y 1),则 x y 4,PA 连线中点的坐标为( x,y),21 21则Error!即Error!代入 x y 4,得(x 2) 2(y1) 21.21 213(2017湖南长沙二模)圆 x2y 22x2y10 上的点到直线 xy2 距离的最大。

13、第 37 讲 等差数列的概念及基本运算1已知正项数列a n中,a 11,a 22,2a a a (n2),则 a6 等于(D)2n 2n 1 2n 1A16 B8C2 D42由 2a a a 可知数列a 是等差数列,且首项为 a 1,公差2n 2n 1 2n 1 2n 21da a 413.2 21所以a 的通项 a 13(n1) 3n2,2n 2n所以 an .所以 a6 4.3n 2 36 22(2018武汉二月调研)在等差数列 an中,前 n 项和 Sn 满足 S7S 245,则 a5(B)A7 B9 C14 D18因为 S7S 2a 3a 4a 5a 6a 745,所以 5a545,所以 a59.3(2018长沙模拟)各项均为正数的等差数列 an中,a 4a936,则前 12 项和 S12 的最小值为( D)A78 B48C60 D72因为 S12 126(。

14、第 68 讲 圆锥曲线的综合应用( 一)(与最值、范围的综合)1(2018北京卷文节选)已知椭圆 M: 1(ab0)的离心率为 ,焦距为 2 .x2a2 y2b2 63 2斜率为 k 的直线 l 与椭圆 M 有两个不同的交点 A,B.(1)求椭圆 M 的方程;(2)若 k1,求|AB|的最大值(1)由题意得 解得 a ,b1.a2 b2 c2,ca 63,2c 22,) 3所以椭圆 M 的方程为 y 21.x23(2)设直线 l 的方程为 yxm,A(x 1,y 1),B(x 2,y 2)由 得 4x26mx 3m 230,y x m,x23 y2 1,)所以 x1x 2 ,x 1x2 .3m2 3m2 34所以|AB| (x2 x1)2 (y2 y1)2 2(x2 x1)2 2(x1 x2)2 4x1x2 .12 3m22当 m0,即直线。

15、第 45 讲 简单的线性规划问题1(2016天津卷)设变量 x,y 满足约束条件Error!则目标函数 z2x5y 的最小值为(B)A4 B6C10 D17由约束条件作出可行域如图所示,目标函数可化为 y x z,在图中画出直线 y x,25 15 25平移该直线,易知经过点 A 时 z 最小又知点 A 的坐标为(3,0),所以 zmin23506.故选 B.2(2018深圳市二模)若 x, y 满足约束条件 则目标函数 z 的x y 1 0,x 1 0,4x y 1 0.) y 1x 3最大值为( C)A. B. 14 23C. D232目标函数 z 表示可行域内的点(x,y) 和点(3,1)连线的斜率,y 1x 3由图可知:当其经过点 A(1,5) 时,直线的斜率最大,。

16、第 36 讲 数列的概念及其表示法1数列a n的前 n 项和 Snn 27n3,则(D)AS 3 最小 BS 4 最小CS 7 最小 DS 3、S 4 最小因为 Snn 27n3(n )2 (nN*),72 374所以 n3 或 n4 时取到最小值2(2018北京海淀模拟)数列 an的前 n 项和为 Sn,若 SnS n1 2n1( n2),且S23,则 a1a 3 的值为(C)A1 B3C5 D6由条件,当 n2 时,a n2n1,令 n2,则 S2S 13,又 S23,所以 a10.a32315.故 a1a 35.3(2018河南洛阳模拟)设数列 an满足 a12a 22 2a32 n1 an (nN *),则数n2列a n的通项公式是(C)Aa n Ba n12n 12n 1Ca n Da n12n 12n 1设2 n1 an的前 n 项和为 Tn,因为数列a。

17、第 80 讲 概率与统计的综合问题1(2018湖北 5 月冲刺试题)有 120 粒试验种子需要播种,现有两种方案:方案一:将 120 粒种子分种在 40 个坑内,每坑 3 粒;方案二:120 粒种子分种在 60 个坑内,每坑2 粒,如果每粒种子发芽的概率为 0.5,并且,若一个坑内至少有 1 粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种(每个坑至多补种一次,且第二次补种的种子颗粒同第一次)假定每个坑第一次播种需要 2 元,补种 1 个坑需 1 元;每个成活的坑可收获 100 粒试验种子,每粒试验种子收益 1 元(1)用 表示播种费用,分。

18、第 72 讲 排列、组合的综合应用问题1某单位拟安排 6 位员工在今年 1 月 1 日至 3 日值班,每天安排 2 人,每人值班 1天若 6 位员工中的甲不值 1 日,乙不值 3 日,则不同的安排方法共有(C)A30 B36C42 D48(方法 1)所有排法减去甲值 1 日或乙值 3 日,再加上甲值 1 日且乙值 3 日的排法,即 C C 2C C C C 42.26 24 15 24 14 13(方法 2)分两类,甲、乙同组,则只能排在 2 日,有 C 6 种排法,甲、乙不同组,24有 C C (A 1)36 种排法,故共有 42 种方法14 13 22北京财富全球论坛期间,某高校有 14 名志愿者参加接待工作若每天排早、中、晚三班。

19、第 58 讲 立体几何的综合问题1(2017全国卷)如图,在四棱锥 PABCD中,AB CD ,且BAPCDP 90.(1)证明:平面 PAB平面 PAD;(2)若 PAPD ABDC ,APD90 ,求二面角 APBC的余弦值(1)证明:由已知BAPCDP90,得 ABAP,CDPD.因为 ABCD ,所以 ABPD.又 APDPP ,所以 AB平面 PAD.因为 AB平面 PAB,所以平面 PAB平面 PAD.(2)在平面 PAD 内作 PFAD,垂足为点 F.由(1)可知,AB平面 PAD,故 ABPF,可得 PF平面 ABCD.以 F 为坐标原点, 的方向为 x 轴正方向,| |为单位长度建立如图所示的空间直角FA AB 坐标系 Fxyz.由(1)及已知可得 A( ,0,0) ,P(0,0, )。

20、第 40 讲 数列求和1已知数列a n的前 n 项和 Snn 3,则 a6a 7a 8a 9 等于 (C)A729 B387C604 D854a6a 7a 8a 9S 9S 59 35 3604.2(2018全国模拟)设 Sn 为等差数列a n的前 n 项和,a 4 4,S 515,若 的1anan 1前 m 项和为 ,则 m 的值为( C)1011A8 B9C10 D11设数列a n的首项为 a1,公差为 d.则有 解得 所以 ann,a1 3d 4,5a1 542 d 15,) a1 1,d 1,)所以 ,1anan 1 1n(n 1) 1n 1n 1所以 Sm1 12 12 13 1m 1m 11 ,1m 1 mm 1令 ,解得 m10.mm 1 10113(2018甘肃会宁月考)已知数列 an的通项公式 anlog 2 (nN *),设其前 n 项和n 1。

【2020年人教版高考数学理科】相关DOC文档
标签 > 2020年人教版高考数学理科一轮练习第41讲数列的综合问题[编号:168868]