2020年人教版高考数学理科一轮练习第12讲函数的图象与变换

第 50 讲 空间几何体的结构及三视图、直观图1下列关于简单几何体的说法中:斜棱柱的侧面中不可能有矩形;侧面是等腰三角形的棱锥是正棱锥;圆台也可看成是圆锥被平行于底面的平面所截,截面与底面之间的部分其中正确的个数为(B)A0 B1C2 D3是错误的;是错误的;是正确的,故选 B.2下图为一个平面图形

2020年人教版高考数学理科一轮练习第12讲函数的图象与变换Tag内容描述:

1、第 50 讲 空间几何体的结构及三视图、直观图1下列关于简单几何体的说法中:斜棱柱的侧面中不可能有矩形;侧面是等腰三角形的棱锥是正棱锥;圆台也可看成是圆锥被平行于底面的平面所截,截面与底面之间的部分其中正确的个数为(B)A0 B1C2 D3是错误的;是错误的;是正确的,故选 B.2下图为一个平面图形水平放置的直观图则这个平面图形可能是下列图形中的(C)按斜二测画法的规则,平行于 x 轴的线段的长度在新坐标系中不变,在 y 轴上或平行于 y 轴的线段长度在新坐标系中变为原来的 ,并注意到xOy 90 ,12xOy 45,则还原图形知选 C.3(2017北京。

2、第 23 讲 同角三角函数的基本关系与诱导公式1tan 300 的值是(B)cos 405sin 765A1 B 13 3C1 D13 3原式tan(360 60)cos360 45sin2360 45tan 60 1 .1tan 45 32(2018广州一模)已知 sin(x ) ,则 cos(x )(D)4 35 4A. B. 45 35C D45 35(方法 1)进行角的配凑cos(x )cos (x )sin (x )4 2 4 4 .35(方法 2)换元法设 x ,则 cos ,且 x ,4 35 4所以 cos(x )cos( )cos( )4 4 4 2sin .353(2018华南师大附中模拟) 已知 5,则。

3、第 18 讲 导数的综合应用导数与不等式1定义域为 R 的函数 f(x)满足 f(1)1,且 f(x)的导函数 f(x) ,则满足 2f(x)1 D x|x1令 g(x)2f(x)x 1,则 g( x)2f ( x)10,所以 g(x)在 R上为增函数,又 g(1)2f(1)110,所以 g(x)x(x0) Bsin x0)C. xsin x D以上各式都不对2令 g(x)sin xx ,则 g(x)cos x10,所以 g(x)在(0,)上单调递减,所以 g(x)1,使得 f(x0)0,则实数a 的取值范围为(B)A0,) B(,0C1,) D(,1由 f(x)0,得 axx ex,令 h(x)xxe x(x1),h(x)1(1 x)e x,h(x)(x 2)ex1 时,f(x )0,f(x )单调递增;当 x0 恒成立,2则实数 m 的取值范围是。

4、第 32 讲 平面向量的坐标表示及坐标运算1已知点 A(1,3),B(4,1),则与向量 同方向的单位向量为(A)AB A( , ) B( , )35 45 45 35C( , ) D( , )35 45 45 35注意与 同向的单位向量为 .AB AB |AB |2已知平面向量 a(x,1),b (x,x 2),则向量 ab(C)A平行于 x 轴B平行于第一、三象限的角平分线C平行于 y 轴D平行于第二、四象限的角平分线因为 ab(0,1x 2),所以 ab 平行于 y 轴,故选 C.3设向量 a(2,x1),b (x1,4),则“x3”是 “a b”的(A)A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件当 a b 时,有 24(x1)(x1) 0,解。

5、第 75 讲 条件概率与事件的相互独立性1甲、乙两人独立地解同一问题,甲解决这个问题的概率是 p1,乙解决这个问题的概率是 p2,那么恰好有 1 人解决这个问题的概率是(B)Ap 1p2 Bp 1(1p 2)p 2(1p 1)C1p 1p2 D1(1p 1)(1p 2)“恰好有 1 人解决”“甲解决乙没有解决”“甲没有解决乙解决”所以恰好 1 人解决的概率为 p1(1p 2)p 2(1p 1)2甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为(D )A. B.12 35C. D.23 34设甲胜一局为事件 A,则甲获得冠军。

6、第 67 讲 直线与圆锥曲线的位置关系1椭圆 mx2ny 21 与直线 y1x 交于 M,N 两点,原点与线段 MN 中点的连线的斜率为 ,则 的值是(A)22 mnA. B.22 2C2 D.12Error!消去 y,得( mn)x 22nxn10,所以 MN 的中点为( ,1 )nm n nm n依题意 ,即 .1 nm nnm n 22 mn 222已知双曲线 1(a 0,b0) 的右焦点为 F,若过点 F 且倾斜角为 60的直线x2a2 y2b2与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(C)A(1,2 B (1,2)C2,) D(2,)因为过点 F 且倾斜角为 60的直线与双曲线的右支有且只有一个交点,所以该直线的斜率的绝对值小于等于渐近。

7、第 43 讲 不等关系与不等式的性质1(2018广西玉林质检)下列四个条件中,使 ab 成立的充分而不必要条件是(D)A|a|b| B. C a 2b2 Dlg alg b1a1b首先要弄清题意,所选出的选项能推出 ab,但 ab 不能推出该选项,故选 D.2已知函数 f(x)ax 22ax 4(0a3)若 x1x 2,x 1x 21a,则(A)Af(x 1)f(x 2) Bf(x 1)f(x 2)Cf(x 1)f( x2) Df(x 1)与 f(x2)的大小不能确定要比较两个量的大小,只要作差、变形、判断就可以了,事实上:f(x1)f (x2)a(x x )2a(x 1x 2)21 2a(x 1 x2)(x1x 2)2a(3a)(x 1x 2)因为 x1x 22y 3 x ,则下列各式中正确的是(D)Axy0 Bx y 0因为 2。

8、第 62 讲 直线与圆、圆与圆的位置关系1(2017山西太原 4 月模拟) 已知圆 C:x 2y 21,直线 l:ykx 2,在1,1 上随机选取一个数 k,则事件“直线 l 与圆 C 相离”发生的概率为 (C)A. B.12 2 22C. D.3 33 2 32若直线 l:y kx2 与圆 C:x 2y 21 相离,则圆心 C 到直线 l 的距离 d1,2|k|k2 1又 k1,1,所以1k 0,即 0),若圆(x6) 2(y8)24 上任意一点 P,都有APB 为锐角,则 a 的取值范围为 (0,8) .以 AB 为直径的圆的方程为 x2y 2a 2,其圆心为(0,0),半径为 a.要使圆(x6) 2(y 8) 24 上任意一点 P,都有APB 为锐角,则圆 x2y 2a 2 与圆(x6) 2( y。

9、第 24 讲 两角和与差的三角函数1sin 15cos 75cos 15sin 105等于(D)A0 B.12C. D132原式sin 15cos 75 cos 15sin 75sin 901.2(2019广东清远一模)函数 f(x)sin xcos(x )的值域为(D)6A B , 32 32 3 3C2,2 D1,1f(x)sin xcos( x )sin x cos x sin x6 32 12 sin x cos xsin(x )12 32 3故其值域为1,13(2019辽宁第二次月考)若 sin( )sin ,则 sin( )的值是(C)23 453 76A B.233 235C D.45 45sin( )sin 23sin cos cos sin sin 23 23。

10、第 25 讲 倍角公式及简单的三角恒等变换1 的值为(C)sin 47 sin 17cos 30cos 17A B32 12C. D.12 32原式sin30 17 sin 17cos 30cos 17sin 30cos 17 cos 30sin 17 sin 17cos 30cos 17 sin 30 .sin 30cos 17cos 17 122.(2017山西太原 4 月模拟)已知 为锐角,若 sin( ) ,则 cos( )(A)6 13 3A. B.26 16 3 28C. D.3 28 23 16(方法 1)因为 为锐角,sin( ) ,6 13所以 cos( ) ,6 223所以 cos( )cos( ) 3。

11、第 22 讲 任意角的三角函数1(经典真题)若 tan 0,则(C)Asin 0 Bcos 0Csin 2 0 Dcos 20由 tan 0 得 是第一、三象限角若 是第三象限,则 A、B 都错由 sin 22sin cos 知 sin20,C 正确 取 ,cos 2cos 0 且 a1) 的图象恒过定点 P,若角 的顶点与原点重合,始边与 x 轴的非负半轴重合,终边经过点 P,则 sin2sin 2 的值为(D)A. B513 513C. D313 313由已知可得点 P 的坐标为(2,3),根据三角函数的定义可得 sin ,cos .313 213所以 sin2sin 2 2 .913 313 213 3133. 在平面直角坐标系中,点 O(0,0),P(6,8) ,将向量 绕点 O 按逆时针方向旋转 后OP。

12、第 80 讲 概率与统计的综合问题1(2018湖北 5 月冲刺试题)有 120 粒试验种子需要播种,现有两种方案:方案一:将 120 粒种子分种在 40 个坑内,每坑 3 粒;方案二:120 粒种子分种在 60 个坑内,每坑2 粒,如果每粒种子发芽的概率为 0.5,并且,若一个坑内至少有 1 粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种(每个坑至多补种一次,且第二次补种的种子颗粒同第一次)假定每个坑第一次播种需要 2 元,补种 1 个坑需 1 元;每个成活的坑可收获 100 粒试验种子,每粒试验种子收益 1 元(1)用 表示播种费用,分。

13、第 17 讲 导数在函数中的应用极值与最值1(2016四川卷文)已知 a 为函数 f(x)x 312x 的极小值点,则 a(D)A4 B2C4 D2由题意得 f(x )3x 212,令 f(x) 0 得 x2 ,所以当 x2 或 x2 时,f(x)0;当2x2 时,f ( x)0,所以 f(x)在(,2)上为增函数,在(2,2) 上为减函数,在 (2,)上为增函数所以 f(x)在 x2 处取得极小值,所以 a2.2函数 f(x) 在0,1 上的最大值为 (B)xexA0 B.1eCe D.2e因为 f(x) 0 在0,1上恒成立,所以 f(x)在0,1 上为增函数,所ex xexex2 1 xex以当 x1 时, f(x)有最大值 .1e3. (2018广州一模)已知函数 f(x)x 3ax 2bxa 2 在 x1 处的极。

14、第 1 讲 集合的概念与运算1(2016 全国卷)设集合 Ax|x 24x30,则 AB(D)A(3, ) B(3, )32 32C(1, ) D( ,3)32 32(1)先化简集合 A,B,再利用交集定义求解因为 x24x30,所以 x ,所以32B x|x 32所以 AB x| 5所以 M(RN)R.(2)当 2a10,若 AB,则实数 c 的取值范围是(B)A(0,1 B 1,)C(0,1) D (1,)由 xx 20,得 00,得 0 .即点(2,1)Aa ,其等价命题为 a 点(2 ,1)A 成立,02332 32 3212(2019海南二校联考)某班共 30 人,其中 15 人喜爱篮球运动,10 人喜爱乒乓球运动,8 人对这两项运动都不喜爱,则喜爱乒乓球运动但不喜爱篮球运动的人数为_7_。

15、第 5 讲 函数的值域与最值1函数 y (xR)的值域为(D)x2x2 1A(0,1) B 0,1C(0,1 D 0,1)y 1 .x2x2 1 x2 1 1x2 1 1x2 1因为 x211,所以 01,解得 2 时,(12a)x 3a1 a,不成立12当 a0,且 a1,设函数 f(x)Error!的最大值为 1,则实数 a 的取值范围是 ,1) .13由题意知,当 x3 时,f (x)x21,所以当 x3 时,Error!解得 a0,b 为正数,则 f(x) 的定义域 D(, 0,) ,f (x)的值ax2 bxba域 A0, ),因为 DA ,所以 a0 不符合条件(3)若 aa 时无最大值,且2a(x 3 3x)max,所以 a1.10已知函数 f(x) (a0,x0) 1a 1x(1)若 f(x)在m,n上的值域是 m,n ,求 。

16、第 13 讲 函数与方程1一元二次方程 ax22x 10(a0)有一个正根和一个负根的充分不必要条件是(C)Aa0Ca1依题意,充要条件为Error!Error!所以 a0,23所以 x0(2,3),所以 g(x0)x 02.3(2018山东菏泽一中高三月考) 设函数 f(x)e x2x4,g( x)ln x2x 25,若实数a,b 分别是 f(x),g(x)的零点,则(A)Ag(a)0 ,且函数 f(x)是增函数,所以 f(x)的零点在(0,1)内,即 00,函数 g(x)的零点在(1,2)内,即 1f(1)0.又函数 g(x)在(0,1)内是增函数,因此, g(a)0)有一个零点,则1x x2 ax 1xa( B)A2 B1 C0 D2因为 f(x)2 x 2 (x a),1x 1x所以 f(x)f( ),所以若。

17、第 27 讲 三角函数的图象与性质( 二)1(经典真题)在函数y cos |2x |,y|cos x| ,ycos(2x ),ytan(2x )中,6 4最小正周期为 的所有函数为 (A)A BC Dycos|2x |cos 2x,最小正周期为 ;由图象知 y|cos x |的最小正周期为 ;ycos(2x )的最小正周期 T ;6 22ytan(2x )的最小正周期 T .4 2因此最小正周期为 的函数为.2(2018天津卷)将函数 y sin(2x )的图象向右平移 个单位长度,所得图象对应5 10的函数(A)A在区间 , 上单调递增34 54B在区间 , 上单调递减34C在区间 , 上单调递增54 32D在区间 ,2上单调递减32函数 y sin(2x )的图象向右平移 个。

18、第 26 讲 三角函数的图象与性质( 一)1若动直线 xa 与函数 f(x)sin x 和 g(x)cos x 的图象分别交于 M、N 两点,则|MN|的最大值为(B)A1 B. 2C. D23|MN|sin acos a| |sin(a )| .24 22(经典真题)如图,某港口一天 6 时到 18 时的水深变化曲线近似满足函数y3sin( x)k .据此函数可知,这段时间水深(单位:m) 的最大值为(C)6A5 B6C8 D10根据图象得函数的最小值为 2,有3k2,得 k5,所以最大值为 3k8.3(2019福建一模)已知 f(x)2cos 2x6sin xcos x,则函数 f(x)的最大值是(C)A3 B. 10C. 1 D. 110 10f(x)1cos 2x3sin 2x ( cos 2x sin 2x)1101010 310。

19、第 28 讲 函数 yAsin(x )的图象与性质1函数 f(x)2sin(x )(0, 0 ,00,| ),x 为 f(x)的零点,x2 4为 y f(x)图象的对称轴,且 f(x)在( , )上单调,则 的最大值为(B)4 18 536A11 B9C7 D5先根据函数的零点及图象对称轴,求出 , 满足的关系式,再根据函数 f(x)在(, )上单调,则( , )的区间长度不大于函数 f(x)周期的 ,然后结合| 计算 的18 536 18 536 12 2最大值因为 f(x)sin(x )的一个零点为 x ,x 为 yf(x)图象的对称轴,4 4所以 k (k 为奇数)T4 2又 T ,所以 k(k 为奇数)2又函数 f(x)在( , )上单调,18 536所以 ,即 12.12 12 2若 1。

20、第 12 讲 函数的图象与变换1(2018成都二诊)为了得到函数 ylog 2 的图象,只需把函数 ylog 2x 的图象上x 14所有的点( C)A向左平移 1 个单位长度,再向上平移 2 个单位长度B向右平移 1 个单位长度,再向上平移 2 个单位长度C向左平移 1 个单位长度,再向下平移 2 个单位长度D向右平移 1 个单位长度,再向下平移 2 个单位长度因为 ylog 2 log 2(x1) 2,x 14所以将 ylog 2x 的图象向左平移 1 个单位长度得到 ylog 2(x1),再将 ylog 2(x1)向下平移 2 个单位长度得到 ylg (x1)2,即 ylog 2 的图象x 142已知函数 yf(x)(xR)满足 f(x1)f(x1),且当 。

【2020年人教版高考数学理科】相关DOC文档
标签 > 2020年人教版高考数学理科一轮练习第12讲函数的图象与变换[编号:156915]