第 21 讲 定积分1 (1cos x )dx 等于(D )2A B2C2 D2(1cos x )dx(xsin x) 2.2 2|2(2018华南师大附中模拟) |x24|d x( C)10A7 B. 223C. D4113|x24|d x (4x 2)dx (4x x3)| 4 .1010 13
2020年人教版高考数学理科一轮练习第66讲曲线与方程Tag内容描述:
1、第 21 讲 定积分1 (1cos x )dx 等于(D )2A B2C2 D2(1cos x )dx(xsin x) 2.2 2|2(2018华南师大附中模拟) |x24|d x( C)10A7 B. 223C. D4113|x24|d x (4x 2)dx (4x x3)| 4 .1010 13 10 13 1133(2019甘肃天水模拟)已知 f(x) 则 f(x)dx 的值为(D)x2, x 0,1,1x, x (1,e,)e0A B34 23C. D.23 43f(x)dx x2dx dx x3| ln x| .e010e11x 13 10 e1 434(2019山东部分重点中学第二次联考)直线 y2x 与抛物线 y3x 2 所围成的封闭图形的面积是(D)A. B2253 2C D.3323由 3x 22x,得 x3 或 x1.封闭图形的面积为 (x 2。
2、第 77 讲 二项分布与正态分布1B(n,p),若 E3D,则 p 等于(B)A. B.13 23C. D.12 14由条件 np3np(1p),得 p .232设随机变量 服从正态分布 N(2,9),若 P(c1)P(4)10.840.16,又随机变量 X 服从正态分布 N(3, 2),所以正态分布的概率密度函数图象关于 x3 对称,P(24) 1 20.160.68.4(2018全国卷)某群体中的每位成员使用移动支付的概率都为 p,各成员的支付方式相互独立设 X 为该群体的 10 位成员中使用移动支付的人数,DX 2.4,P(X4)P(X 6),则 p(B)A0.7 B0.6C0.4 D0.3由题意可知,10 位成员中使用移动支付的人数 X 服从二项分布,即 XB(10,p。
3、第 49 讲 数学归纳法1在应用数学归纳法证明凸 n 边形的对角线为 n(n3)条时,第一步应验证 n 等于(D)12A1 B2C3 D42用数学归纳法证明:当 n 为正奇数时,x ny n能被 x y 整除,第二步假设应写成(D)A假设 nk (k 为正奇数)时命题成立,再推证 nk1 时命题成立B假设 n2k 1 时 (kN *)命题成立,再推证 n2k2 时命题成立C假设 n2k 1 时 (kN *)命题成立,再推证 n2k3 时命题成立D假设 n2k1 时 (kN *)命题成立,再推证 n2k1 时命题成立k 为正奇数时,k 1 为正偶数,A 不正确;2k1 为正奇数时,2k 2 为正偶数,B 不正确;2k1 与 2k3 (k N*)虽为相邻两。
4、第 80 讲 概率与统计的综合问题1(2018湖北 5 月冲刺试题)有 120 粒试验种子需要播种,现有两种方案:方案一:将 120 粒种子分种在 40 个坑内,每坑 3 粒;方案二:120 粒种子分种在 60 个坑内,每坑2 粒,如果每粒种子发芽的概率为 0.5,并且,若一个坑内至少有 1 粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种(每个坑至多补种一次,且第二次补种的种子颗粒同第一次)假定每个坑第一次播种需要 2 元,补种 1 个坑需 1 元;每个成活的坑可收获 100 粒试验种子,每粒试验种子收益 1 元(1)用 表示播种费用,分。
5、第 42 讲 算法初步与程序框图1(2018广州二模)执行如图的程序框图, 若输出 y ,则输入 x 的值为(A)32Alog 231 或 B1log 23 或2 2C1log 23 D. 2此题的功能是已知分段函数 f(x) 的函数值,求相应的自变量2 log2x,x1,2x, x 1 )的值得 xlog 2 log 231.x 1,2x 32,) 32得 log2x ,所以 x .x1,2 log2x 32,) 12 2所以 x 的值为 log231 或 .22.(2016深圳市二模)如图所示的流程图中,若输入 a,b,c 的值分别是 2,4,5,则输出的 x(A)A1 B2 Clg 2 D10由题意可知 a1 000 的最小偶数 n,那么在 和 两个空白框中,可以分别填入(D)AA1 000 和 nn1B。
6、第 12 讲 函数的图象与变换1(2018成都二诊)为了得到函数 ylog 2 的图象,只需把函数 ylog 2x 的图象上x 14所有的点( C)A向左平移 1 个单位长度,再向上平移 2 个单位长度B向右平移 1 个单位长度,再向上平移 2 个单位长度C向左平移 1 个单位长度,再向下平移 2 个单位长度D向右平移 1 个单位长度,再向下平移 2 个单位长度因为 ylog 2 log 2(x1) 2,x 14所以将 ylog 2x 的图象向左平移 1 个单位长度得到 ylog 2(x1),再将 ylog 2(x1)向下平移 2 个单位长度得到 ylg (x1)2,即 ylog 2 的图象x 142已知函数 yf(x)(xR)满足 f(x1)f(x1),且当 。
7、第 5 讲 函数的值域与最值1函数 y (xR)的值域为(D)x2x2 1A(0,1) B 0,1C(0,1 D 0,1)y 1 .x2x2 1 x2 1 1x2 1 1x2 1因为 x211,所以 01,解得 2 时,(12a)x 3a1 a,不成立12当 a0,且 a1,设函数 f(x)Error!的最大值为 1,则实数 a 的取值范围是 ,1) .13由题意知,当 x3 时,f (x)x21,所以当 x3 时,Error!解得 a0,b 为正数,则 f(x) 的定义域 D(, 0,) ,f (x)的值ax2 bxba域 A0, ),因为 DA ,所以 a0 不符合条件(3)若 aa 时无最大值,且2a(x 3 3x)max,所以 a1.10已知函数 f(x) (a0,x0) 1a 1x(1)若 f(x)在m,n上的值域是 m,n ,求 。
8、第 4 讲 函数及其表示1(2017江西九江七校联考) 函数 y 的定义域为(D)9 x2log2x 1A(1,3) B(1,3C(1,0)(0,3) D(1,0)(0,3由题意得Error!所以11 的 x 的取值范围是 12( , ) .14由题意知,可对不等式分 x0,0x ,x 三段讨论12 12当 x0 时,原不等式为 x1x 1,解得 x ,12 14所以 x0;14当 0x 时,原不等式为 2xx 1,显然成立;12 12当 x 时,原不等式为 2x2x 1,显然成立12 12综上可知,x .147已知 f(x)是二次函数,若 f(0)0,且 f(x1) f (x)x 1,求函数 f(x)的解析式设 f(x)ax 2bx c (a0),又 f(0)0,所以 c0,所以 f(x)ax 2bx.又因为 f(x1)f(x。
9、第 47 讲 合情推理与演绎推理1下列在向量范围内成立的命题,类比推广到复数范围内,仍然为真命题的个数是(C)|ab | |a|b|; |a b| |a|b|;a 2 0; ( ab) 2a 22abb 2.A1 B2C3 D4其中、为真,为假,故选 C.2“因为指数函数 ya x是增函数( 大前提),而 y( )x是指数函数(小前提) ,所以12y( )x是增函数(结论) ”,上面推理中错误的是(A)12A大前提错,导致结论错B小前提错,导致结论错C推理形式错,导致结论错D大前提和小前提都错,导致结论错3若数列a n的前 n 项和 Snn 2an(nN *),且 a11,通过计算 a2,a 3,a 4,猜想 an为(B)A. B. 2n 12 2nn 1。
10、第 1 讲 集合的概念与运算1(2016 全国卷)设集合 Ax|x 24x30,则 AB(D)A(3, ) B(3, )32 32C(1, ) D( ,3)32 32(1)先化简集合 A,B,再利用交集定义求解因为 x24x30,所以 x ,所以32B x|x 32所以 AB x| 5所以 M(RN)R.(2)当 2a10,若 AB,则实数 c 的取值范围是(B)A(0,1 B 1,)C(0,1) D (1,)由 xx 20,得 00,得 0 .即点(2,1)Aa ,其等价命题为 a 点(2 ,1)A 成立,02332 32 3212(2019海南二校联考)某班共 30 人,其中 15 人喜爱篮球运动,10 人喜爱乒乓球运动,8 人对这两项运动都不喜爱,则喜爱乒乓球运动但不喜爱篮球运动的人数为_7_。
11、第 63 讲 椭 圆1已知椭圆 1 的左、右焦点分别为 F1、F 2,M 是椭圆上的一点,N 是 MF1x216 y212的中点,若|ON| 1,则|MF 1|的长等于(C)A2 B4C6 D5因为|ON |1,所以|MF 2|2,又|MF 1|MF 2|8,所以|MF 1|6.选 C.2(2017江苏五校联考)一个椭圆中心在原点,焦点 F1,F 2 在 x 轴上,P(2, )是椭圆3上一点,且|PF 1|,| F1F2|,|PF 2|成等差数列,则椭圆方程为 (A)A. 1 B. 1x28 y26 x216 y26C. 1 D. 1x28 y24 x216 y24设椭圆的标准方程为 1(ab0) x2a2 y2b2由点(2, )在椭圆上知 1.34a2 3b2又|PF 1|, |F1F2|,|PF 2|成等差数列,则|PF 1| |PF2| 。
12、第 40 讲 数列求和1已知数列a n的前 n 项和 Snn 3,则 a6a 7a 8a 9 等于 (C)A729 B387C604 D854a6a 7a 8a 9S 9S 59 35 3604.2(2018全国模拟)设 Sn 为等差数列a n的前 n 项和,a 4 4,S 515,若 的1anan 1前 m 项和为 ,则 m 的值为( C)1011A8 B9C10 D11设数列a n的首项为 a1,公差为 d.则有 解得 所以 ann,a1 3d 4,5a1 542 d 15,) a1 1,d 1,)所以 ,1anan 1 1n(n 1) 1n 1n 1所以 Sm1 12 12 13 1m 1m 11 ,1m 1 mm 1令 ,解得 m10.mm 1 10113(2018甘肃会宁月考)已知数列 an的通项公式 anlog 2 (nN *),设其前 n 项和n 1。
13、第 11 讲 幂函数1已知 f(x)x ,若 0ca Bcb aCbac Da bc因为若 x(e 1 ,1),所以1eln x0,所以 bc.12从而 bca.3.在同一直角坐标系中,函数 f(x)x a(x0),g(x) log ax 的图象可能是(D)因为 a0,且 a1,所以 f(x)x a 在(0,) 上单调递增,所以排除 A.当 01 时,B、C 中 f(x)与 g(x)的图象矛盾故选 D.4(2017河北武邑第三次调研) 已知定义在 R 上的奇函数 f(x)满足:当 x0 时,f (x)x 3,若不等式 f(4t)f(2m mt2)对任意实数 t 恒成立,则实数 m 的取值范围是(A)A(, ) B( ,0)2 2C(,0)( ,) D( , )( ,)2 2 2当 xf(2 mmt 2)对任意实数 t 恒成。
14、第 68 讲 圆锥曲线的综合应用( 一)(与最值、范围的综合)1(2018北京卷文节选)已知椭圆 M: 1(ab0)的离心率为 ,焦距为 2 .x2a2 y2b2 63 2斜率为 k 的直线 l 与椭圆 M 有两个不同的交点 A,B.(1)求椭圆 M 的方程;(2)若 k1,求|AB|的最大值(1)由题意得 解得 a ,b1.a2 b2 c2,ca 63,2c 22,) 3所以椭圆 M 的方程为 y 21.x23(2)设直线 l 的方程为 yxm,A(x 1,y 1),B(x 2,y 2)由 得 4x26mx 3m 230,y x m,x23 y2 1,)所以 x1x 2 ,x 1x2 .3m2 3m2 34所以|AB| (x2 x1)2 (y2 y1)2 2(x2 x1)2 2(x1 x2)2 4x1x2 .12 3m22当 m0,即直线。
15、第 67 讲 直线与圆锥曲线的位置关系1椭圆 mx2ny 21 与直线 y1x 交于 M,N 两点,原点与线段 MN 中点的连线的斜率为 ,则 的值是(A)22 mnA. B.22 2C2 D.12Error!消去 y,得( mn)x 22nxn10,所以 MN 的中点为( ,1 )nm n nm n依题意 ,即 .1 nm nnm n 22 mn 222已知双曲线 1(a 0,b0) 的右焦点为 F,若过点 F 且倾斜角为 60的直线x2a2 y2b2与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(C)A(1,2 B (1,2)C2,) D(2,)因为过点 F 且倾斜角为 60的直线与双曲线的右支有且只有一个交点,所以该直线的斜率的绝对值小于等于渐近。
16、第 59 讲 直线的方程1若 xsin ycos 10 的倾斜角 是(C)7 7A. B.7 37C. D.67 514因为 ktan tan tan( )tan ,7 7 67所以 .672(2018绵阳南山中学月考) 若 A(2,3),B( 3, 2),直线 l 过点 P(1,1)且与线段 AB 相交,则 l 的斜率 k 的取值范围是(C)Ak 或 k Bk 或 k34 43 43 34C. k D k 34 43 43 34因为 A( 2,3) ,B(3,2),P(1,1) ,所以 kAP ,k BP , 3 1 2 1 43 2 1 3 1 34所以 k .34 433点 P(x,y)在以 A(3,1),B(1,0) ,C (2,0)为顶点的 ABC 的内部运动( 不包括边界),则 的取值范围是(D)y 2x 1A ,1 B( ,1)12 12C ,1 D( ,1)14 14的。
17、第 61 讲 圆的方程1圆(x 1) 2y 22 关于直线 xy10 对称的圆的方程是(C)A(x 1)2(y2) 2 B( x1) 2(y2) 212 12C(x1) 2( y2) 22 D( x1) 2(y2) 22圆心 (1,0)关于直线 xy 10 的对称点是( 1,2),所以圆的方程是(x1)2( y 2)22.2点 P(4, 2)与圆 x2y 24 上任一点连线的中点的轨迹方程是(A)A(x 2)2(y1) 21 B( x2) 2(y1) 24C(x4) 2( y2) 24 D( x2) 2(y1) 21设圆上任一点为 A(x1,y 1),则 x y 4,PA 连线中点的坐标为( x,y),21 21则Error!即Error!代入 x y 4,得(x 2) 2(y1) 21.21 213(2017湖南长沙二模)圆 x2y 22x2y10 上的点到直线 xy2 距离的最大。
18、第 13 讲 函数与方程1一元二次方程 ax22x 10(a0)有一个正根和一个负根的充分不必要条件是(C)Aa0Ca1依题意,充要条件为Error!Error!所以 a0,23所以 x0(2,3),所以 g(x0)x 02.3(2018山东菏泽一中高三月考) 设函数 f(x)e x2x4,g( x)ln x2x 25,若实数a,b 分别是 f(x),g(x)的零点,则(A)Ag(a)0 ,且函数 f(x)是增函数,所以 f(x)的零点在(0,1)内,即 00,函数 g(x)的零点在(1,2)内,即 1f(1)0.又函数 g(x)在(0,1)内是增函数,因此, g(a)0)有一个零点,则1x x2 ax 1xa( B)A2 B1 C0 D2因为 f(x)2 x 2 (x a),1x 1x所以 f(x)f( ),所以若。
19、第 82 讲 曲线的参数方程1(经典真题)已知动点 P,Q 都在曲线 C:Error!(t 为参数 )上,对应参数分别为 t与 t2 (00)(1)若曲线 C1 与曲线 C2 有一个公共点在 x 轴上,求 a 的值;(2)当 a3 时,曲线 C1 与曲线 C2 交于 A,B 两点,求 A,B 两点的距离(1)曲线 C1:Error! 的直角坐标方程为 y32x .曲线 C1 与 x 轴的交点为 ( ,0). 32曲线 C2:Error! 的直角坐标方程为 1. x2a2 y29曲线 C2 与 x 轴的交点为 (a,0),( a,0). 由 a0,曲线 C1 与曲线 C2 有一个公共点在 x 轴上,知 a . 32(2)当 a3 时,曲线 C2:Error! 为圆 x2y 29. 圆心到直线 y3。
20、第 66 讲 曲线与方程1已知点 A( 2,0)、B(3,0),动点 P(x,y)满足 x 2,则点 P 的轨迹是(D)PA PB A圆 B椭圆C双曲线 D抛物线 (2x,y ), (3x,y),因为 x 2,所以(2x)(3x)PA PB PA PB y 2x 2,即 y2x 6.2已知 F1(1,0)、F 2(1,0),且|F 1F2|是|PF 1|与|PF 2|的等差中项,则动点 P 的轨迹是(A)A椭圆 B双曲线C抛物线 D线段由于|PF 1| PF2|2|F 1F2|42 ,所以 P 点轨迹为椭圆3曲线 f(x,y)0 关于直线 xy 20 对称曲线的方程是(D)Af(x 2,y) 0 Bf(x 2,y )0Cf(y2,x2)0 Df(y2,x 2) 0设(x 0,y 0)是 f(x,y )0 上任一点,它关于 xy20 的对称点为(x。