第 45 讲 简单的线性规划问题1(2016天津卷)设变量 x,y 满足约束条件Error!则目标函数 z2x5y 的最小值为(B)A4 B6C10 D17由约束条件作出可行域如图所示,目标函数可化为 y x z,在图中画出直线 y x,25 15 25平移该直线,易知经过点 A 时 z 最小又知点
2020年人教版高考数学理科一轮练习第15讲导数的概念及运算Tag内容描述:
1、第 45 讲 简单的线性规划问题1(2016天津卷)设变量 x,y 满足约束条件Error!则目标函数 z2x5y 的最小值为(B)A4 B6C10 D17由约束条件作出可行域如图所示,目标函数可化为 y x z,在图中画出直线 y x,25 15 25平移该直线,易知经过点 A 时 z 最小又知点 A 的坐标为(3,0),所以 zmin23506.故选 B.2(2018深圳市二模)若 x, y 满足约束条件 则目标函数 z 的x y 1 0,x 1 0,4x y 1 0.) y 1x 3最大值为( C)A. B. 14 23C. D232目标函数 z 表示可行域内的点(x,y) 和点(3,1)连线的斜率,y 1x 3由图可知:当其经过点 A(1,5) 时,直线的斜率最大,。
2、第 72 讲 排列、组合的综合应用问题1某单位拟安排 6 位员工在今年 1 月 1 日至 3 日值班,每天安排 2 人,每人值班 1天若 6 位员工中的甲不值 1 日,乙不值 3 日,则不同的安排方法共有(C)A30 B36C42 D48(方法 1)所有排法减去甲值 1 日或乙值 3 日,再加上甲值 1 日且乙值 3 日的排法,即 C C 2C C C C 42.26 24 15 24 14 13(方法 2)分两类,甲、乙同组,则只能排在 2 日,有 C 6 种排法,甲、乙不同组,24有 C C (A 1)36 种排法,故共有 42 种方法14 13 22北京财富全球论坛期间,某高校有 14 名志愿者参加接待工作若每天排早、中、晚三班。
3、第 12 讲 函数的图象与变换1(2018成都二诊)为了得到函数 ylog 2 的图象,只需把函数 ylog 2x 的图象上x 14所有的点( C)A向左平移 1 个单位长度,再向上平移 2 个单位长度B向右平移 1 个单位长度,再向上平移 2 个单位长度C向左平移 1 个单位长度,再向下平移 2 个单位长度D向右平移 1 个单位长度,再向下平移 2 个单位长度因为 ylog 2 log 2(x1) 2,x 14所以将 ylog 2x 的图象向左平移 1 个单位长度得到 ylog 2(x1),再将 ylog 2(x1)向下平移 2 个单位长度得到 ylg (x1)2,即 ylog 2 的图象x 142已知函数 yf(x)(xR)满足 f(x1)f(x1),且当 。
4、第 33 讲 平面向量的数量积1(2018全国卷)已知向量 a,b 满足| a|1,ab1,则 a(2ab)(B)A4 B3C2 D0a(2ab)2a 2ab2|a| 2a b.因为|a| 1,ab1,所以原式 21213.2(2018汕头模拟)若两个非零向量 a, b 满足|b|2|a|2 , |a2b|3 , 则 a, b 的夹角是(D)A. B.6 3C. D2因为|b|2|a|2 , |a2b|3 ,所以(a2b) 2a 24ab4b 29 , 得 ab2.所以 cos 1,ab|a|b| 221因为 0,所以 .3(2016山东卷)已知非零向量 m,n 满足 4|m|3|n|,cos m,n ,若13n( tm n),则实数 t 的值为(B)A4 B。
5、第 58 讲 立体几何的综合问题1(2017全国卷)如图,在四棱锥 PABCD中,AB CD ,且BAPCDP 90.(1)证明:平面 PAB平面 PAD;(2)若 PAPD ABDC ,APD90 ,求二面角 APBC的余弦值(1)证明:由已知BAPCDP90,得 ABAP,CDPD.因为 ABCD ,所以 ABPD.又 APDPP ,所以 AB平面 PAD.因为 AB平面 PAB,所以平面 PAB平面 PAD.(2)在平面 PAD 内作 PFAD,垂足为点 F.由(1)可知,AB平面 PAD,故 ABPF,可得 PF平面 ABCD.以 F 为坐标原点, 的方向为 x 轴正方向,| |为单位长度建立如图所示的空间直角FA AB 坐标系 Fxyz.由(1)及已知可得 A( ,0,0) ,P(0,0, )。
6、第 5 讲 函数的值域与最值1函数 y (xR)的值域为(D)x2x2 1A(0,1) B 0,1C(0,1 D 0,1)y 1 .x2x2 1 x2 1 1x2 1 1x2 1因为 x211,所以 01,解得 2 时,(12a)x 3a1 a,不成立12当 a0,且 a1,设函数 f(x)Error!的最大值为 1,则实数 a 的取值范围是 ,1) .13由题意知,当 x3 时,f (x)x21,所以当 x3 时,Error!解得 a0,b 为正数,则 f(x) 的定义域 D(, 0,) ,f (x)的值ax2 bxba域 A0, ),因为 DA ,所以 a0 不符合条件(3)若 aa 时无最大值,且2a(x 3 3x)max,所以 a1.10已知函数 f(x) (a0,x0) 1a 1x(1)若 f(x)在m,n上的值域是 m,n ,求 。
7、第 34 讲 平面向量的应用1一船从某河一岸驶向另一岸,船速为 v1,水速为 v2,已知船可垂直到达对岸,则(B)A|v 1|v2|C|v 1| v2| D|v 1|与|v 2|的大小不确定2设 a,b 是非零向量,若函数 f(x)(xab) (axb)的图象是一条直线,则必有(A)Aa b Ba bC|a|b| D|a| |b|f(x)xa 2x 2ababxb 2,因为 f(x)为直线,即 ab0,所以 ab.3已知 O、N、P 在ABC 所在平面内,且| | | |, 0,且OA OB OC NA NB NC ,则点 O、N、P 依次是ABC 的 (C)PA PB PB PC PC PA A重心、外心、垂心 B重心、外心、内心C外心、重心、垂心 D外心、重心、内心由| | | |知,O 为 ABC 。
8、第 53 讲 空间中的平行关系1下列命题正确的是(C)A若两条直线和同一平面所成的角相等,则这两条直线平行B若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D若两个平面都垂直于第三个平面,则这两个平面平行A 中两条直线可能平行或相交; B、D 中两平面可能平行或相交2已知 1, 2, 3 是三个相互平行的平面,平面 1, 2 之间的距离为 d1,平面2, 3 之间的距离为 d2.直线 l 与 1, 2, 3 分别相交于 P1,P 2,P 3.那么“P 1P2P 2P3”是“d1d 2”的(C)A充分而。
9、第 60 讲 两直线的位置关系1一条光线从点(5,3)射入,与 x 轴正向成 角,遇 x 轴后反射,若 tan 3,则反射线所在的直线方程为(D)A. y3x12 B. y3x12C. y3 x12 D. y3x12反射线所在的直线过点(5,3) ,斜率 ktan 3,由点斜式得 y33( x5),即 y3x12.2(2017江西景德镇二模)若直线 l1:( m2)xy10 与直线 l2:3xmy 0 互相平行,则 m 的值等于(D)A. 0 或1 或 3 B0 或 3C0 或1 D1 或 3当 m0 时,两条直线方程分别化为 2xy10,3x 0,此时两直线不平行;当 m0 时,由于 l1l2,则 ,解得 m1 或 3.m 23 1m经检验满足条件综上,m1 或 3.3已知直线 l1:y 2x。
10、第 82 讲 曲线的参数方程1(经典真题)已知动点 P,Q 都在曲线 C:Error!(t 为参数 )上,对应参数分别为 t与 t2 (00)(1)若曲线 C1 与曲线 C2 有一个公共点在 x 轴上,求 a 的值;(2)当 a3 时,曲线 C1 与曲线 C2 交于 A,B 两点,求 A,B 两点的距离(1)曲线 C1:Error! 的直角坐标方程为 y32x .曲线 C1 与 x 轴的交点为 ( ,0). 32曲线 C2:Error! 的直角坐标方程为 1. x2a2 y29曲线 C2 与 x 轴的交点为 (a,0),( a,0). 由 a0,曲线 C1 与曲线 C2 有一个公共点在 x 轴上,知 a . 32(2)当 a3 时,曲线 C2:Error! 为圆 x2y 29. 圆心到直线 y3。
11、第 17 讲 导数在函数中的应用极值与最值1(2016四川卷文)已知 a 为函数 f(x)x 312x 的极小值点,则 a(D)A4 B2C4 D2由题意得 f(x )3x 212,令 f(x) 0 得 x2 ,所以当 x2 或 x2 时,f(x)0;当2x2 时,f ( x)0,所以 f(x)在(,2)上为增函数,在(2,2) 上为减函数,在 (2,)上为增函数所以 f(x)在 x2 处取得极小值,所以 a2.2函数 f(x) 在0,1 上的最大值为 (B)xexA0 B.1eCe D.2e因为 f(x) 0 在0,1上恒成立,所以 f(x)在0,1 上为增函数,所ex xexex2 1 xex以当 x1 时, f(x)有最大值 .1e3. (2018广州一模)已知函数 f(x)x 3ax 2bxa 2 在 x1 处的极。
12、第 32 讲 平面向量的坐标表示及坐标运算1已知点 A(1,3),B(4,1),则与向量 同方向的单位向量为(A)AB A( , ) B( , )35 45 45 35C( , ) D( , )35 45 45 35注意与 同向的单位向量为 .AB AB |AB |2已知平面向量 a(x,1),b (x,x 2),则向量 ab(C)A平行于 x 轴B平行于第一、三象限的角平分线C平行于 y 轴D平行于第二、四象限的角平分线因为 ab(0,1x 2),所以 ab 平行于 y 轴,故选 C.3设向量 a(2,x1),b (x1,4),则“x3”是 “a b”的(A)A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件当 a b 时,有 24(x1)(x1) 0,解。
13、第 59 讲 直线的方程1若 xsin ycos 10 的倾斜角 是(C)7 7A. B.7 37C. D.67 514因为 ktan tan tan( )tan ,7 7 67所以 .672(2018绵阳南山中学月考) 若 A(2,3),B( 3, 2),直线 l 过点 P(1,1)且与线段 AB 相交,则 l 的斜率 k 的取值范围是(C)Ak 或 k Bk 或 k34 43 43 34C. k D k 34 43 43 34因为 A( 2,3) ,B(3,2),P(1,1) ,所以 kAP ,k BP , 3 1 2 1 43 2 1 3 1 34所以 k .34 433点 P(x,y)在以 A(3,1),B(1,0) ,C (2,0)为顶点的 ABC 的内部运动( 不包括边界),则 的取值范围是(D)y 2x 1A ,1 B( ,1)12 12C ,1 D( ,1)14 14的。
14、第 61 讲 圆的方程1圆(x 1) 2y 22 关于直线 xy10 对称的圆的方程是(C)A(x 1)2(y2) 2 B( x1) 2(y2) 212 12C(x1) 2( y2) 22 D( x1) 2(y2) 22圆心 (1,0)关于直线 xy 10 的对称点是( 1,2),所以圆的方程是(x1)2( y 2)22.2点 P(4, 2)与圆 x2y 24 上任一点连线的中点的轨迹方程是(A)A(x 2)2(y1) 21 B( x2) 2(y1) 24C(x4) 2( y2) 24 D( x2) 2(y1) 21设圆上任一点为 A(x1,y 1),则 x y 4,PA 连线中点的坐标为( x,y),21 21则Error!即Error!代入 x y 4,得(x 2) 2(y1) 21.21 213(2017湖南长沙二模)圆 x2y 22x2y10 上的点到直线 xy2 距离的最大。
15、第 20 讲 导数的实际应用及综合应用1某商场销售某种商品的经验表明,该商品每日的销售量 y(单位:千克) 与销售价格x(单位:元 /千克 )满足关系式 y 10(x6) 2,其中 3x 6,a 为常数已知销售价格ax 3为 5 元/千克时,每日可售出该商品 11 千克(1)求 a 的值;(2)若该商品的成本为 3 元/ 千克,试确定销售价格 x 的值,使商场每日销售该商品所获得的利润最大(1)因为当 x5 时,y11,所以 10(56) 211,解得 a2.a5 3(2)由(1)知该商品每日的销售量 y 10(x6) 2(3x6),2x 3所以该商场每日销售该商品所获得的利润f(x) 10(x 6) 2(x3)210( x3)( x6) 2(3。
16、第 18 讲 导数的综合应用导数与不等式1定义域为 R 的函数 f(x)满足 f(1)1,且 f(x)的导函数 f(x) ,则满足 2f(x)1 D x|x1令 g(x)2f(x)x 1,则 g( x)2f ( x)10,所以 g(x)在 R上为增函数,又 g(1)2f(1)110,所以 g(x)x(x0) Bsin x0)C. xsin x D以上各式都不对2令 g(x)sin xx ,则 g(x)cos x10,所以 g(x)在(0,)上单调递减,所以 g(x)1,使得 f(x0)0,则实数a 的取值范围为(B)A0,) B(,0C1,) D(,1由 f(x)0,得 axx ex,令 h(x)xxe x(x1),h(x)1(1 x)e x,h(x)(x 2)ex1 时,f(x )0,f(x )单调递增;当 x0 恒成立,2则实数 m 的取值范围是。
17、第 36 讲 数列的概念及其表示法1数列a n的前 n 项和 Snn 27n3,则(D)AS 3 最小 BS 4 最小CS 7 最小 DS 3、S 4 最小因为 Snn 27n3(n )2 (nN*),72 374所以 n3 或 n4 时取到最小值2(2018北京海淀模拟)数列 an的前 n 项和为 Sn,若 SnS n1 2n1( n2),且S23,则 a1a 3 的值为(C)A1 B3C5 D6由条件,当 n2 时,a n2n1,令 n2,则 S2S 13,又 S23,所以 a10.a32315.故 a1a 35.3(2018河南洛阳模拟)设数列 an满足 a12a 22 2a32 n1 an (nN *),则数n2列a n的通项公式是(C)Aa n Ba n12n 12n 1Ca n Da n12n 12n 1设2 n1 an的前 n 项和为 Tn,因为数列a。
18、第 1 讲 集合的概念与运算1(2016 全国卷)设集合 Ax|x 24x30,则 AB(D)A(3, ) B(3, )32 32C(1, ) D( ,3)32 32(1)先化简集合 A,B,再利用交集定义求解因为 x24x30,所以 x ,所以32B x|x 32所以 AB x| 5所以 M(RN)R.(2)当 2a10,若 AB,则实数 c 的取值范围是(B)A(0,1 B 1,)C(0,1) D (1,)由 xx 20,得 00,得 0 .即点(2,1)Aa ,其等价命题为 a 点(2 ,1)A 成立,02332 32 3212(2019海南二校联考)某班共 30 人,其中 15 人喜爱篮球运动,10 人喜爱乒乓球运动,8 人对这两项运动都不喜爱,则喜爱乒乓球运动但不喜爱篮球运动的人数为_7_。
19、第 37 讲 等差数列的概念及基本运算1已知正项数列a n中,a 11,a 22,2a a a (n2),则 a6 等于(D)2n 2n 1 2n 1A16 B8C2 D42由 2a a a 可知数列a 是等差数列,且首项为 a 1,公差2n 2n 1 2n 1 2n 21da a 413.2 21所以a 的通项 a 13(n1) 3n2,2n 2n所以 an .所以 a6 4.3n 2 36 22(2018武汉二月调研)在等差数列 an中,前 n 项和 Sn 满足 S7S 245,则 a5(B)A7 B9 C14 D18因为 S7S 2a 3a 4a 5a 6a 745,所以 5a545,所以 a59.3(2018长沙模拟)各项均为正数的等差数列 an中,a 4a936,则前 12 项和 S12 的最小值为( D)A78 B48C60 D72因为 S12 126(。
20、第 31 讲 平面向量的概念及线性运算1设 M 为平行四边形 ABCD 对角线的交点,O 为平行四边形 ABCD 内任意一点,则 等于(D)OA OB OC OD A. B2OM OM C3 D4OM OM ( )( )OA OB OC OD OA OC OB OD 2 2 4 .OM OM OM 2(2019浙江模拟) 设 D,E,F 分别为PQR 的三边 QR,RP ,PQ 的中点,则 EQ (B )FR A. B.QR PD C. D.12QR 12PD 因为 D,E ,F 分别为PQR 的三边 QR,RP,PQ 的中点,所以 EQ FR PQ ( ) .PE PR PF PQ 12PR PR 12PQ 12PR PQ PD 3(2018石家庄一模)ABC 中,点 D 在边 AB 上,且。