2020广东中考数学一轮复习课件第1章 第4讲 二次根式

第3课时,一元二次方程,第二章 方程与不等式,2020年广东中考复习课件,第1讲 方程与方程组,1.能够根据具体问题中的数量关系列出一元二次方程. 2.理解配方法,会用配方法、公式法、因式分解法解数字,系数的一元二次方程.,3.会用一元二次方程根的判别式判别方程是否有实根和两,个实根之间是否相等.,

2020广东中考数学一轮复习课件第1章 第4讲 二次根式Tag内容描述:

1、第3课时,一元二次方程,第二章 方程与不等式,2020年广东中考复习课件,第1讲 方程与方程组,1.能够根据具体问题中的数量关系列出一元二次方程. 2.理解配方法,会用配方法、公式法、因式分解法解数字,系数的一元二次方程.,3.会用一元二次方程根的判别式判别方程是否有实根和两,个实根之间是否相等.,4.能根据具体问题的实际意义,检验方程的解是否合理.,1.关于 x 的一元二次方程(m1)x25xm23m20 的,常数项为 0,则 m(,),A.1,B.2,C.1 或 2,D.0,答案:B 2.(2018 年江苏盐城)已知一元二次方程 x2k30 有一个,根为 1,则 k 的值为(,),A.2,B.2,C.4,D.4。

2、第二章 方程与不等式,2020年广东中考复习课件,第1课时 一元一次方程和二元一次方程组,第1讲 方程与方程组,第二章 方程与不等式,2020年广东中考复习课件,1.能够根据具体问题中的数量关系列出方程,体会方程是,刻画现实世界数量关系的有效模型.,2.经历估计方程解的过程. 3.掌握等式的基本性质. 4.会解一元一次方程.,5.掌握代入消元法和加减消元法,能解二元一次方程组. 6.能根据具体问题的实际意义,检验方程的解是否合理.,1.(2019 年四川成都)若 m1 与2 互为相反数,则 m 的值 为_. 答案:1,答案:B,3.在 x3y3 中,若用 x 表示 y,则 y_;。

3、,第4课时 二次函数,考点突破,3,中考特训,4,广东中考,5,课前小测,1(2019哈尔滨) 二次函数y(x6)28 的最大值是_ 2已知对称轴平行于y轴的抛物线与x轴交与 (1,0),(3,0)两点,则它的对称轴为 _,8,x2,课前小测,x2或x8,课前小测,4若y(m1)xm26m5是二次函数,则m( ) A7 B1 C1或7 D以上都不对,A,课前小测,5(2019河池) 如图,抛物线yax2bxc的对称轴为直线x1,则下列结论中,错误的是( ) Aac0 Bb24ac0 C2ab0 Dabc0,第5题图,C,知识精点,知识点一:二次函数的解析式,1常用二次函数的解析式: (1)一般式:yax2bxc(a0); (2)顶点式:ya(xh)2k(a0); (3)。

4、第4讲 圆,第1课时,圆的基本性质,第四章 图形的认识,2020年广东中考复习课件,1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、,等弧的概念.,2.探索圆周角与圆心角及其所对的弧的关系.,3.了解并证明圆周角定理及其推论:圆周角的度数等于它 所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90 的圆周角所对的弦是直径;圆内接四边形的对角互补.,1.如图 4-4-1,BC 是O 的直径,点 A 是O 上异于 B,C,的一点,则A 的度数为(,) 图 4-4-1,A.60,B.70,C.80,D.90,答案:D,2.(2019 年吉林)如图 4-4-2,在O 中, 所对的圆周角 ACB50,若 P 。

5、第二章 方程与不等式,第一部分 基础过关,第2讲 二元一次方程组,3,考情通览,4,5,1二元一次方程 (1)二元一次方程的概念:含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫做二元一次方程 (2)二元一次方程的解的概念:一般地,使二元一次方程等号两边的值相等的两个未知数的值,叫做二元一次方程的解二元一次方程有无数组解,知识梳理,要点回顾,6,1.(1)下列是二元一次方程的是( ) A3x6x B3x2y Cxy20 D2x3yxy,B,即时演练,7,D,2,2,8,2二元一次方程组 (1)二元一次方程组的概念:把两个二元一次方程合在一起,就组成了一个二元一次方。

6、第一部分第二章第3讲1(2017广东)如果x2是方程x23xk0的一个根,则常数k的值为(B)A1B2C1D22(2018铜仁)关于x的一元二次方程x24x30的解为(C)Ax11,x23Bx11,x23Cx11,x23Dx11,x233(2019金华)用配方法解方程x26x80时,配方结果正确的是(A)A(x3)217B(x3)214C(x6)244D(x3)214(2018广东)关于x的一元二次方程x23xm0有两个不相等的实数根,则实数m的取值范围是(A)AmDm5(2019广东)已知x1、x2是一元二次方程x22x0的两个实数根,下列结论错误的是(D)Ax1x2Bx2x10Cx1x22Dx1x226(2019衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了。

7、第二章 方程与不等式,第一部分 基础过关,第1讲 一元一次方程,3,考情通览,4,5,1方程 (1)方程的概念:含有未知数的等式,叫做方程 (2)方程的解的概念:能使方程左右两边相等的未知数的值,叫做方程的解,知识梳理,要点回顾,6,1.(1)下列四个式子中,是方程的是( ) A325 B3x21 C2x30 Da22abb2 (2)已知x2是关于x的方程3xa0的一个解,则a的值是_.,B,即时演练,6,7,要点回顾,8,2.(1)下列变形中错误的是( ) A如果xy,那么x2y2 B如果xy,那么x1y1 C如果x3,那么xy3y D如果x23x,那么x3,D,即时演练,9,D,10,3一元一次方程 (1)一元一次方程的概念:只含。

8、第四章 三角形,第一部分 基础过关,第1讲 线、角、相交线与平行线,3,考情通览,4,5,1线 (1)直线:两点确定一条直线,直线无法测量; 射线:射线有且只有一个端点,射线无法测量; 线段:“两点之间线段最短” (2)垂直:若两条线相交的夹角为90,则这两条直线相互垂直同一平面内,过一点有且只有一条直线与已知直线垂直,知识梳理,要点回顾,6,(3)角平分线 性质:角平分上线的点到这个角两边的距离相等 判定:到角两边的距离相等的点在角的平分线上 (4)垂直平分线 性质:垂直平分线上的点到线段两个端点的距离相等 判定:到线段两个端点的距离。

9、1,第16讲 二次函数,一、二次函数的概念 一般地,形如_(a,b,c是常数,且a_)的函数,叫做二次函数,0,第1课时,yax2bxc,二、二次函数的基本形式 1. 二次函数yax2bxc用配方法可化成ya(x h)2k的形式,其中h ,k .(h,k)就是二次函数的_坐标 2. 二次函数由特殊到一般,可分为以下几种形式 yax2; yax2k; ya(xh)2; ya(xh)2k; yax2bxc,顶点,三、二次函数图象及图象的变换 二次函数的图象是_,它是轴对称图形,它的对称轴平行或重合于_轴,抛物线,y,1. 平移步骤 (1)将抛物线解析式转化成顶点式ya(xh)2k,确定其顶点坐标(h,k); (2)保持抛物线ya。

10、,第4课时 二次根式,考点突破,3,中考特训,4,广东中考,5,课前小测,B,B,课前小测,D,B,课前小测,A,知识精点,知识点一:二次根式的相关概念,3最简二次根式:同时满足两个条件(1)被开方数 中不含能开得尽方的因数或因式;(2)被开方数 不含分母 4同类二次根式:几个二次根式化成最简二次根 式后,如果被开方数相同则叫做同类二次根式,大于或等于零,知识精点,知识点二:二次根式的有关性质及运算,a,a,知识精点,知识点三:二次根式的大小比较,2找出与平方后所得数字相邻的两个开的尽 方的整数,如459;,考点突破,考点一:二次根式的相关概念,D,考点。

11、第4 讲,二次函数,第三章 函数及其图象,2020年广东中考复习课件,1.通过对实际问题情境的分析,体会二次函数的意义. 2.会用描点法画出二次函数的图象,能通过图象了解二次,函数的性质.,3.会用配方法将数字系数的二次函数的表达式化为 ya(x h)2 k(a0)的形式,并能由此得到二次函数图象的顶点坐 标、开口方向, 画出图象的对称轴,并能解决简单实际问题.,4.会利用二次函数的图象求一元二次方程的近似解.,1.(2019 年河南)已知抛物线 yx2bx4 经过(2,n),) B.4 D.4,和(4,n)两点,则 n 的值为( A.2 C.2 答案:B,2.(2019 年内蒙古呼和浩特)二次函。

12、第二章 方程与不等式,第一部分 基础过关,第3讲 一元二次方程,3,考情通览,4,5,1一元二次方程 (1)一元二次方程的概念:只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程 (2)一元二次方程的一般形式:ax2bxc0(a,b,c是常数,且a0) (3)一元二次方程的解的概念:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,知识梳理,要点回顾,6,1.(1)若(m2)xm22mx10是关于x的一元二次方程,则m的值为_. (2)将方程x22x153x化为一般形式为_,其中a_,b_,c_. (3)已知x1是关于x的一元二次方程x2ax2b0的解,则2a4b( ) A2。

13、第4讲二次根式(参考用时:40分钟)A层(基础)1.(2019常州)下列各数中与2+3的积是有理数的是 (D)(A)2+3 (B)2 (C)3 (D)2-3解析:(2+3)(2-3)=4-3=1.故选D.2.(2019益阳)下列运算正确的是(D)(A)(-2)2=-2 (B)(23)2=6(C)2+3=5 (D)23=6解析:A.(-2)2=2,故本选项错误;B.(23)2=12,故本选项错误;C.2与3不是同类二次根式,不能合并,故本选项错误;D.正确.故选D.3.代数式3-x+1x-1中x的取值范围在数轴上表示为(A)解析:由题意知3-x0,x-10,解得x3且x1,故选A.4.若a+|a|=0,则(a-2)2+a2等于(A)(A)2-2a(B)2a-2(C)-2 (D)2解析:a+|a|=0,|a|=-a.a0.原式=2-a-a=2-2a.故选A。

14、第4讲 二次根式,总纲目录,泰安考情分析,基础知识过关,知识点一 二次根式,1.二次根式:形如 (a0)的式子叫做二次根式.,2.二次根式有意义的条件:被开方数大于等于0.,3.最简二次根式:最简二次根式要同时满足下列两个条件: (1)被开方数中不含 分母 ; (2)被开方数中不含能开得尽方的因数或因式.,4.同类二次根式:几个二次根式化成最简二次根式后,如果 被开方数 相同,那么这几个二次根式就叫做同类二次根式. 温馨提示 判断二次根式是不是最简二次根式时要注意:(1)当二次根式中被开方数为分数或小数时,此二次根式不是最简二次根 式;(2)当二次根式的。

15、第一部分第三章第4讲1(2018攀枝花)抛物线yx22x2的顶点坐标为(A)A(1,1)B(1,1)C(1,3)D(1,3)2(2019荆门)抛物线yx24x4与坐标轴的交点个数为(C)A0B1C2D33(2019重庆)抛物线y3x26x2的对称轴是(C)A直线x2B直线x2C直线x1D直线x14(2019兰州)已知点A(1,y1),B(2,y2)在抛物线y(x1)22上,则下列结论正确的是(A)A2y1y2B2y2y1Cy1y22Dy2y125(2019益阳)已知二次函数yax2bxc的图象如图所示,下列结论:ac0,b2a0,b24ac0,abc0,正确的是(A)ABCD6(2019哈尔滨)二次函数y(x6)28的最大值是8.7(2019宜宾。

16、安徽中考20142018 考情分析,基础知识梳理,中考真题汇编,安徽中考20142018 考情分析,说明:从上表可以看出本节着力考查用有理数的值估计二次根式简单运算的结果,通常以选择题呈现,难度不大,考查的分值一般在4分左右纵观中考考题,复习时还需注意以下三个方面:(1)立足二次根式的概念,考查一次不等式的解法;(2)立足值的非负性,考查一次方程的解法;(3)立足二次根式的四则运算,融合实数的混合运算进行考查,通常以简单的解答题的呈现 由于2018年在实数的运算题中渗透考查了二次根式的乘法,预测2019安徽中考会以“二次根式的加、减、。

17、第3讲,二次根式,2020年广东中考复习课件,第一章 数与式,1.了解平方根、算术平方根、立方根的概念,会用根号表 示数的平方根、算术平方根、立方根. 2.了解乘方与开方互为逆运算,会用平方运算求某些非负 数的平方根,会用立方运算求百以内的整数(对应的负整数)的 立方根,会用计算器求平方根和立方根. 3.了解二次根式、最简二次根式的概念,了解二次根式(根 号下仅限于数)加、减、乘、除运算法则,会用它们进行有关实,母有理化).,答案:B,答案:C,3.(2019 年广西)若二次根式 有意义,则 x 的取值范围 是_. 答案:x4,答案:B,答案:,(续表),。

18、1.二次根式 形如 的式子叫做二次根式,二次根式有意义的条件是被开方数a 0. 2.最简二次根式 (1)被开方数中不含分母. (2)被开方数中不含有 的因数或因式.,第4讲 二次根式,二次根式的有关概念,(a0),开得尽方,(3)分母中不含二次根式. 3.同类二次根式 几个二次根式化成最简二次根式后,如果 相同,那么这几个二次根式就叫做同类二次根式.,被开方数,二次根式的性质(常考点),a,|a|,a,-a,二次根式的运算,3.二次根式的加减 二次根式相加减,先将各个二次根式化成 二次根式,再将同类二次根式合并. 4.二次根式的化简或运算,最终结果都要化成 .,最简,最简。

19、第一部分第一章第4讲1(2019无锡)函数y中的自变量x的取值范围是(D)AxBx1CxDx2(2019广东)化简的结果是(B)A4B4C4D23(2018兰州)下列二次根式中,是最简二次根式的是(B)ABCD4(2018无锡)下列等式正确的是(A)A()23B3C3D()235(2017广州)下列运算正确的是(D)AB2CaD|a|a(a0)6下列整数中,与10最接近的是(C)A4B5C6D77已知n是正整数,是整数,则n的最小值是(C)A1B2C3D48(2018恩施)函数y的自变量x的取值范围是x且x3.9(2019南京)计算的结果是0.10(2019湘西)下面是一个简单的数值运算程序,当输入x的值为16时,。

20、第一章 数与式,第一部分 基础过关,第4讲 二次根式,3,考情通览,4,5,知识梳理,要点回顾,6,3,即时演练,2,7,C,8,要点回顾,9,2,即时演练,5,20,3,7,2a,3,10,要点回顾,11,2,即时演练,2y,12,【思路点拨】分式有意义,分母不等于零;二次根式的被开方数是非负数即x10且x20.,命题揭秘,A,13,D,14,【思路点拨】最简二次根式必须满足两个条件:被开方数不含分母,被开方数不能含开得尽方的因数或因式凡是被开方数为分数、小数的,则一定不是最简二次根式,D,15,B,16,【思路点拨】利用二次根式的加减法对A进行判断;根据二次根式的性质对B进行判断;根据。

【2020广东中考数学一轮复习】相关PPT文档
【2020广东中考数学一轮复习】相关DOC文档
标签 > 2020广东中考数学一轮复习课件第1章 第4讲 二次根式[编号:103034]