4.2 直线、圆的位置关系4.2.1 直线与圆的位置关系【课时目标】 1能根据给定直线和圆的方程,判断直线和圆的位置关系2能根据直线与圆的位置关系解决有关问题直线 AxBy C0 与圆(xa) 2( yb) 2r 2 的位置关系及判断位置关系 相交 相切 相离公共点个数 _个 _个 _个几何法:设圆
2.3.3直线与圆的位置关系课后作业含答案Tag内容描述:
1、4.2 直线、圆的位置关系4.2.1 直线与圆的位置关系【课时目标】 1能根据给定直线和圆的方程,判断直线和圆的位置关系2能根据直线与圆的位置关系解决有关问题直线 AxBy C0 与圆(xa) 2( yb) 2r 2 的位置关系及判断位置关系 相交 相切 相离公共点个数 _个 _个 _个几何法:设圆心到直线的距离d|Aa Bb C|A2 B2 d_r d_r d_r判定方法 代数法:由Error!消元得到一元二次方程的判别式 _0 _0 _0一、选择题1直线 3x4y 120 与C :( x1) 2(y1) 29 的位置关系是 ( )A相交并且过圆心 B相交不过圆心C相切 D相离2已知圆 x2y 2DxEyF0 与 y 轴切于原点,那么( 。
2、1.2.3空间中的垂直关系第1课时直线与平面垂直基础过关1.已知m,n表示两条不同直线,表示平面.下列说法正确的是()A.若m,n,则mnB.若m,n,则mnC.若m,mn,则nD.若m,mn,则n答案B解析方法一若m,n,则m,n可能平行、相交或异面,A错;若m,n,则mn,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m,mn,则n或n,C错;若m,mn,则n与可能相交,可能平行,也可能n,D错.方法二如图,在正方体ABCDABCD中,用平面ABCD表示.A项中,若m为AB,n为BC,满足m,n,但m与n是相交直线,故A错.B项中,m,n,满足mn,这是线面垂直的性质,故。
3、1.2.2空间中的平行关系第1课时平行直线、直线与平面平行基础过关1.能保证直线a与平面平行的条件是()A.a,b,abB.b,abC.b,c,acD.b,Aa,Ba,Cb,Db,且ACBD答案A解析由直线与平面平行的判定定理知A正确.2.下列命题中正确的是()A.若直线l上有无数个点不在平面内,则lB.若直线l与平面平行,则l与平面内的任意一条直线都平行C.如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行D.若直线l与平面平行,则l与平面没有公共点答案D解析A项中,若lA时,除A点所有的点均不在内;B项中,l时,中有无数条直线与l异面;C项中,另。
4、2.52.5 直线与圆圆与圆的位置关系直线与圆圆与圆的位置关系 2 25.15.1 直线与圆的位置关系直线与圆的位置关系 第第 1 1 课时课时 直线与圆的位置关系直线与圆的位置关系 1直线 3x4y120 与圆x12y129 的位置关系是。
5、2.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系一、选择题1.直线3x4y250与圆x2y29的位置关系为()A.相切 B.相交C.相离 D.相离或相切考点直线与圆的位置关系题点判断直线与圆的位置关系答案C2.若直线3x4ym0与圆x2y22x4y10没有公共点,则实数m的取值范围是()A.515C.m13 D.42,m15.故选B.3.已知圆x2y29的弦过点P(1,2),当弦长最短时,该弦所在直线的方程为()A.y20 B.x2y50C.2xy0 D.x10答案B解析当弦。
6、第2课时圆与圆的位置关系基础过关1圆(x2)2y24与圆(x2)2(y1)29的位置关系为()A内切 B相交C外切 D相离答案B解析两圆圆心分别为(2,0),(2,1),半径长分别为2和3,圆心距d.32d32,两圆相交2圆C1:x2y22x2y20和圆C2:x2y24x2y10的公切线的条数为()A1 B2 C3 D4答案B解析圆C1:(x1)2(y1)24,圆心C1(1,1),半径长r12,圆C2:(x2)2(y1)24,圆心C2(2,1),半径长r22,两圆圆心距为|C1C2|,显然0|C1C2|4,即|r1r2|C1C2|r1r2,所以两圆相交,从而两圆有两条公切线3一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距。
7、8 8. .4.24.2 空间点直线平面之间的位置关系空间点直线平面之间的位置关系 基础达标 一选择题 1.分别和两条异面直线平行的两条直线的位置关系是 A.一定平行 B.一定相交 C.一定异面 D.相交或异面 解析 可能相交也可能异面,但。
8、73.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系基础过关1以(2,1)为圆心且与直线3x4y50相切的圆的标准方程为()A(x2)2(y1)23 B(x2)2(y1)23C(x2)2(y1)29 D(x2)2(y1)29答案C解析根据题意知点(2,1)到直线3x4y50的距离与半径长相等,所以r3,所以所求圆的标准方程为(x2)2(y1)29.2圆x2y24上的点到直线xy20的距离的最大值为()A2 B2C. D0答案A解析圆心(0,0)到直线xy20的距离d,所求最大距离为2.3直线l:y1k(x1)和圆x2y22y0的关系是()A相离 B相切或相交C相交 D相切答案C解析l过定点A(1,1),1212210,点A在圆上直线x1过点A且为圆的切。
9、2.2.3两条直线的位置关系基础过关1.直线3x2y60和2x5y70的交点坐标为()A.(4,3) B.(4,3)C.(4,3) D.(3,4)答案C解析由方程组得故选C.2.已知过A(2,m)和B(m,4)的直线与斜率为2的直线平行,则m的值是()A.8B.0C.2D.10答案A解析由题意可知,kAB2,所以m8.3.若直线l经过点(a2,1)和(a2,1),且与经过点(2,1),斜率为的直线垂直,则实数a的值是()A.B.C.D.答案A解析由于直线l与经过点(2,1)且斜率为的直线垂直,可知a2a2.kl,1,a.4.以A(1,3)和B(5,1)为端点的线段AB的中垂线方程是()A.3xy80B.3xy40C.2xy60D.3xy80答案B解析kAB,AB的中点坐标为(2,2),AB的中垂线与AB。
10、23.3直线与圆的位置关系学习目标1.掌握直线与圆的三种位置关系:相交、相切、相离.2.会用代数法和几何法来判定直线与圆的三种位置关系.3.会用直线与圆的位置关系解决一些实际问题知识点直线与圆的位置关系直线AxByC0与圆(xa)2(yb)2r2的位置关系及判断位置关系相交相切相离公共点个数2个1个0个判断方法几何法:设圆心到直线的距离ddr代数法:由方程组消元得到一元二次方程的判别式0001若直线与圆有公共点,则直线与圆相交()2如果直线与圆组成的方程组有解,则直线和圆相交或相切()3若圆心到直线的距离大于半径,则直线与圆的方程联立消元后。
11、2.3.4圆与圆的位置关系基础过关1.圆(x2)2y24与圆(x2)2(y1)29的位置关系为()A.内切B.相交C.外切D.相离答案B解析两圆圆心坐标分别为(2,0),(2,1),半径分别为2和3,圆心距d.32d32,两圆相交.2.圆C1:x2y22x2y20和圆C2:x2y24x2y10的公切线的条数为()A.1B.2C.3D.4答案B解析圆C1:(x1)2(y1)24,圆心C1(1,1),半径长r12,圆C2:(x2)2(y1)24,圆心C2(2,1),半径长r22,两圆圆心距为|C1C2|,显然0|C1C2|4,即|r1r2|C1C2|r1r2,所以两圆相交,从而两圆有两条公切线.3.一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬。
12、23.3直线与圆的位置关系一、选择题1直线3x4y250与圆x2y29的位置关系为()A相切 B相交C相离 D相离或相切考点直线与圆的位置关系题点判断直线与圆的位置关系答案C2若直线3x4ym0与圆x2y22x4y10没有公共点,则实数m的取值范围是()A515Cm13 D42,m15.故选B.3圆心坐标为(2,1)的圆在直线xy10上截得的弦长为2,那么这个圆的方程为()A(x2)2(y1)24 B(x2)2(y1)22C(x2)2(y1)28 D(x2)2(。
13、2.3直线与圆、圆与圆的位置关系(一)基础过关1.已知圆C与直线xy0及xy40都相切,圆心在直线xy0上,则圆C的方程为()A.(x1)2(y1)22 B.(x1)2(y1)22C.(x1)2(y1)22 D.(x1)2(y1)22解析由条件知xy0与xy40都与圆相切,且平行,所以圆C的圆心C在直线xy20上.由得圆心C(1,1).又因为两平行线间距离d2,所以所求圆的半径长r,故圆C的方程为(x1)2(y1)22.答案B2.在圆x2y22x6y0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.5 B.10 C.15 D.20解析圆的方程化为标准形式为(x1)2(y3)210,由圆的性质可知ACBD,最长弦|AC|2,最短弦BD。
14、2.3直线与圆、圆与圆的位置关系(二)基础过关1.若圆C1:(x2)2(ym)29与圆C2:(xm)2(y1)24外切,则m的值为()A.2 B.5C.2或5 D.不确定解析两圆的圆心分别为(2,m),(m,1),两圆的半径分别为3,2,由题意得32,解得m2或5.答案C2.已知半径为1的动圆与圆(x5)2(y7)216相切,则动圆圆心的轨迹方程是()A.(x5)2(y7)225B.(x5)2(y7)217或(x5)2(y7)215C.(x5)2(y7)29D.(x5)2(y7)225或(x5)2(y7)29解析设动圆的圆心为(x,y),若相内切,则有413,即(x5)2(y7)29;若相外切,则有415,即(x5)2(y7)225,故所求动圆圆心的轨迹方程为(x5)2(y7)29或(x5)2(y7)225.。
15、2.3.3直线与圆的位置关系基础过关1.已知圆x2y22x2ya0截直线xy20所得弦的长为4,则实数a的值为()A.2B.4C.6D.8答案B解析由圆的方程x2y22x2ya0可得,圆心为(1,1),半径r.圆心到直线xy20的距离为d.由r2d2()2得2a24,所以a4.2.圆x2y24上的点到直线xy20的距离的最大值为()A.2B.2C.D.0答案A解析圆心(0,0)到直线xy20的距离d,所求最大距离为2.3.直线l:y1k(x1)和圆x2y22y0的位置关系是()A.相离B.相切或相交C.相交D.相切答案C解析l过定点A(1,1),1212210,点A在圆上,直线x1过点A且为圆的切线,又l斜率存在,l与圆一定相交,故选C.4.已知圆C:(xa)2。