第第 2 课时课时 导数的几何意义导数的几何意义 1设 f(x0)0,则曲线 yf(x)在点(x0,f(x0)处的切线( ) A不存在 B与 x 轴平行或重合 C与 x 轴垂直 D与 x 轴斜交 答案 B 解析 因为 f(x0)0,所以曲线 yf(x)在点(x0,f(x0)处的切线斜率为 0. 2已
1.1.3 导数的几何意义 学案含答案Tag内容描述:
1、第第 2 课时课时 导数的几何意义导数的几何意义 1设 f(x0)0,则曲线 yf(x)在点(x0,f(x0)处的切线( ) A不存在 B与 x 轴平行或重合 C与 x 轴垂直 D与 x 轴斜交 答案 B 解析 因为 f(x0)0,所以曲线 yf(x)在点(x0,f(x0)处的切线斜率为 0. 2已知曲线 y2x2上一点 A(2,8),则在点 A 处的切线斜率为( ) A4 B16 C8 。
2、第第 2 2 课时课时 导数的几何意义导数的几何意义 学习目标 1.了解导函数的概念, 理解导数的几何意义.2.会求简单函数的导函数.3.根据导数 的几何意义,会求曲线上某点处的切线方程 知识点一 导数的几何意义 1割线斜率与切线斜率 设函数 yf(x)的图象如图所示,直线 AB 是过点 A(x0,f(x0)与点 B(x0 x,f(x0 x)的一条 割线,此割线的斜率是y x fx0 xfx。
3、3.3复数的几何意义学习目标1.了解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.2.掌握实轴、虚轴、模等概念.3.理解向量加法、减法的几何意义,能用几何意义解决一些简单问题知识点一复平面思考实数可用数轴上的点来表示,平面向量可以用坐标表示,类比一下,复数怎样来表示呢?答案任何一个复数zabi,都和一个有序实数对(a,b)一一对应,因此,复数集与平面直角坐标系中的点集之间可以建立一一对应关系梳理建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数;除。
4、3.1.3 复数的几何意义复数的几何意义 学习目标 1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一 一对应关系.2.掌握实轴、虚轴、模等概念.3.掌握用向量的模来表示复数的模的方法.4.理解共 轭复数的概念 知识点一 复平面 建立了直角坐标系来表示复数的平面叫做复平面, 在复平面内, x 轴叫做实轴, y 轴叫做虚轴, x 轴的单位是 1,y 轴的单位是 i,实轴与虚轴的。
5、2.2导数的几何意义一、选择题1若曲线yf(x)在点(x0,f(x0)处的切线方程为2xy10,则()Af(x0)0 Bf(x0)0Cf(x0)0 Df(x0)不存在2曲线yx22在点(1,)处切线的倾斜角为()A1 B.C. D3曲线yx33x21在点P处的切线平行于直线y9x1,则切线方程为()Ay9xBy9x26Cy9x26Dy9x6或y9x264已知函数yf(x)的图像如图所示,则函数yf(x)的图像可能是()5设f(x)为可导函数,且满足li 1,则曲线yf(x)在点(1,f(1)处的切线斜率为()A2 B1 C1 D26设P为曲线C:yf(x)x22x3上的点,且曲线C在点P处切线倾斜角的取值范围为,则点P的横坐标的取值范围为()A(, B1,0C0,1 D,。
6、22导数的几何意义一、选择题1已知曲线yx22上一点P,则在点P处的切线的倾斜角为()A30 B45C135 D165考点求函数在某点处的切线斜率或切点坐标题点求函数在某点处的切线的倾斜角答案B解析曲线yx22在点P处的切线斜率为k1,所以在点P处的切线的倾斜角为45,故选B.2下列各点中,在曲线yx2上,且在该点处的切线倾斜角为的是()A(0,0) B(2,4)C. D.考点求函数在某点处的切线斜率或切点坐标题点求函数在某点处的切点坐标答案D解析设切点坐标为(x0,y0),则当xx0时,y2x0tan 1,所以x0,y0.3.如图,函数yf(x)的图像在点P(2,y)处的切线是l,则f(2)f(2)。
7、11.3 导数的几何意义1.理解曲线的切线的含义 2.理解导数的几何意义 3.会求曲线在某点处的切线方程4理解导函数的定义,会用定义法求简单函数的导函数1导数的几何意义(1)切线的定义如图,对于割线 PPn,当点 Pn趋近于点 P 时,割线 PPn趋近于确定的位置,这个确定位置的直线 PT 称为点 P 处的切线(2)导数的几何意义当点 Pn无限趋近于点 P 时,k n无限趋近于切线 PT 的斜率因此,函数 f(x)在 xx 0 处的导数就是切线 PT 的斜率 k,即 k f(x 0)limx 0 lim x 0f(x0 x) f(x0)x2导函数的概念(1)定义:当 x 变化时,f(x )便是 x 的一个函数,我。
8、22导数的几何意义学习目标1.理解导数的几何意义.2.根据导数的几何意义,会求曲线上某点处的切线方程.3.正确理解曲线“过某点”和“在某点”处的切线,并会求其方程知识点一割线思考函数yf(x)在x0,x0x上的平均变化率为,由下图你能说出它的几何意义吗?答案表示过点A(x0,f(x0),B(x0x,f(x0x)的斜率梳理割线的定义函数yf(x)在x0,x0x的平均变化率为,它是过A(x0,f(x0)和B(x0x,f(x0x)两点的直线的斜率这条直线称为曲线yf(x)在点A处的一条割线知识点二导数的几何意义如图,Bn的坐标为(xn,f(xn)(n1,2,3,4,),A的坐标为(x0,y0),直线AT。
9、1.1.3 导数的几何意义导数的几何意义 学习目标 1.理解导数的几何意义.2.根据导数的几何意义,会求曲线上某点处的切线方程 知识点 导数的几何意义 如图,Pn的坐标为(xn,f(xn)(n1,2,3,4,),P 的坐标为(x0,y0),直线 PT 为在点 P 处的切 线 思考 1 割线 PPn的斜率 kn是多少? 答案 割线 PPn的斜率 knyn xn fxnfx0 xnx0 . 思。