,课时9 一元二次方程根的判别式,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 一元二次方程根的判别式 关于x的一元二次方程ax2bxc0(a0)的根的判别式为_ (1)b24ac0一元二次方程ax2bxc0(a0)有两个_实数根,即x1,2_ (2)b24ac0一元二次
中考大一轮数学复习课件 课时33 与圆有关的位置关系Tag内容描述:
1、,课时9 一元二次方程根的判别式,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 一元二次方程根的判别式 关于x的一元二次方程ax2bxc0(a0)的根的判别式为_ (1)b24ac0一元二次方程ax2bxc0(a0)有两个_实数根,即x1,2_ (2)b24ac0一元二次方程ax2bxc0(a0)有_相等的实数根,即x1x2_ (3)b24ac0一元二次方程ax2bxc0(a0)_实数根 温馨提示 在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件 2. 一元二次方程根与系数的关系 若关于x的一元二次方程ax2bxc0(a0)有两根分别为x1,x2,那。
2、首 页 末 页 第二部分第二部分 图形与几何图形与几何 第九章第九章 圆圆 考考 点点 管管 理理 中中 考考 再再 现现 课课 时时 作作 业业 归归 类类 探探 究究 第第3 30 0课时课时 实数的有关概念实数的有关概念 首 页 末 。
3、第六单元第六单元 圆圆 第第 25 课时课时 与圆有关的位置关系与圆有关的位置关系 点对点课时内考点巩固30 分钟 1. 2019 广州平面内,O 的半径为 1,点 P 到 O 的距离为 2,过点 P 可作O 的切线的条数为 A. 0 条 。
4、第22讲 与圆有关的位置关系,总纲目录,泰安考情分析,基础知识过关,知识点四 三角形的外接圆和内切圆,知识点一 与圆有关的位置关系,1.与圆有关的位置关系,温馨提示 点与圆的位置关系可通过d(点到圆心的距离)和r(圆 的半径)之间的大小关系进行判断;直线与圆的位置关系可通过d (圆心到直线的距离)和r(圆的半径)之间的大小关系进行判断.,2.过同一直线上的三点不能作圆,不在同一直线上的三点确定一个圆.,知识点二 切线的判定和性质 1.切线的判定 (1)和圆 只有一个 公共点的直线是圆的切线; (2)到圆心的距离等于 半径 的直线是圆的切线; (3)经过。
5、中考数学 (安徽专用),第五章 圆 5.1 圆的性质及与圆有关的位置关系,1.(2019安徽,13,5分)如图,ABC内接于O,CAB=30,CBA=45,CDAB于点D.若O的半径为2,则CD 的长为 .,A组 中考题组,解析 如图,连接OC、OB,则COB=2CAB=60,OC=OB, COB为等边三角形,BC=2. CBA=45,CDAB, CB= CD,CD= .,答案,解题关键 连接OC、OB,得到COB是等边三角形是解答本题的关键.,2.(2018安徽,12,5分)如图,菱形ABOC的边AB,AC分别与O相切于点D,E.若点D是AB的中点,则DOE= .,答案 60,解析 AB,AC分别与圆O相切于点D,E,ODAB,OEAC,在菱形ABOC中,AB=BO,点D是AB的中点, BD= AB= BO,BOD=3。
6、安徽中考20142018 考情分析,基础知识梳理,中考真题汇编,安徽中考20142018 考情分析,说明:由以上分析可以看出,安徽的中考,2014、2015、2017年都没有涉及“与圆有关的位置关系”的题目,2016年在选择题里考察了点与圆位置关系、圆周角定理、最短问题等知识的综合题,难度较大,在填空题里考察了切线的性质和弧长公式的综合,难度一般.2018年在填空题里考察了菱形的性质和切线的性质的综合,难度不大 由以上分析可以看出,安徽的中考,考查本部分“与圆有关的位置关系”的题目,有的年份有,有的年份没有,2019年如果出这部分的题目,一个。
7、,第2课时 与圆有关的位置关系,考点突破,3,中考特训,4,广东中考,5,课前小测,D,1已知O的半径为2,直线l上有一点P满足PO2,则直线l与O的位置关系是( ) A相切 B相离 C相离或相切 D相切或相交,课前小测,D,2(2019哈尔滨) 如图,PA、PB分别与O相切于A、B两点,点C为O上一点,连接AC、BC,若P50,则ACB的度数为( ) A60 B75 C70 D65 第2题图,课前小测,B,3(2019福建) 如图,PA、PB是O切线, A、B为切点,点C在O上,且ACB55, 则APB等于( ) A55 B70 C110 D125 第3题图,课前小测,27,4(2018眉山) 如图所示,AB是O的直径,PA切O于点A,线段PO交O于点C,。
8、第24讲 与圆有关的位置关系,一、点与圆的位置关系 点与圆的位置关系有_、_和_ 设O的半径为r,点P到圆心O的距离OPd. 点P在O外d_r. 点P在O上d_r. 点P在O内d_r.,在圆内,在圆上,在圆外,二、直线与圆的位置关系 直线与圆的位置关系有_、_和_ 设O的半径为r,圆心O到直线AB的距离为d. AB与O相离d_r(公共点为_个) AB与O相切d_r(公共点为_个) AB与O相交d_r(公共点为_个),相交,相切,相离,0,1,2,三、圆的切线 1定义:直线与圆有_公共点(即直线与圆_)时,这条直线叫做圆的切线,这个唯一的公共点叫做_ 2性质:圆的切线垂直于过切点的_ 3判定:经过直径。
9、,课时32圆的有关概念与性质,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 圆的定义及其性质 (1)圆的定义有两种方式: 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆固定的端点叫_,线段OA叫做_ 圆是到定点的距离等于定长的点的_ (2)圆的对称性: 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴 圆是以圆心为对称中心的中心对称图形 圆是旋转对称图形圆绕圆心旋转任意角度,都能和原来的图形重合,这就是圆的_ 2. 垂径定理及推论 (1)垂径定理:垂直于弦的_平分这。
10、课题 33 与圆有关的位置关系A 组 基础题组一、选择题1.(2018 石家庄长安一模)如图,在ABC 中,B=90,AB=21,BC=20,有一个半径为 10 的圆分别与 AB、BC 相切,则此圆的圆心是( )A.AB 的中垂线与 BC 中垂线的交点B.B 的平分线与 AC 的交点C.B 的平分线与 AB 中垂线的交点D.B 的平分线与 BC 中垂线的交点2.(2018 沧州模拟)如图,在O 中,AB 为直径,BC 为弦,CD 为切线,连接 OC.若BCD=50,则AOC 的度数为( )A.40 B.50 C.80 D.1003.如图,I 是ABC 的内心,AI 的延长线和ABC 的外接圆相交于点 D,连接 BI、BD、DC.下列说法中错误的一项是( )A.线段 DB 绕点 D。
11、课题33 与圆有关的位置关系,基础知识梳理,中考题型突破,易混易错突破,河北考情探究,考点一 点和圆的位置关系 点与圆的位置关系有三种,分别是 点在圆外 , 点在圆上 和 点在圆内 . 如图,设圆的半径为r,点到圆心的距离为d,则 (1)点在圆外 dr ,如点A; (2)点在圆上d=r,如点 B ; (3)点在 圆内 dr,如点 C .,基础知识梳理,考点二 直线与圆的位置关系 设圆的半径为r,圆心O到直线l的距离为d,则直线l与O 的位置关系如表所 示:,1.切线的概念和性质 (1)切线的定义:直线和圆只有 一个 公共点时,这条直线叫圆的切线,这 个公共点叫做切点. (2)切线的性质:。
12、,课时34 与圆有关的计算,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,夯实基本 知已知彼,3. 圆柱和圆锥 (1)设圆柱的底面半径为r,高为h,底面周长为C,则: 圆柱的侧面展开图是_ 圆柱侧面积:SCh_ 圆柱的全面积:S全_ (2)设圆锥的底面半径为r,底面周长为C. 圆锥的侧面积:S侧_ 圆锥的全面积:S全_ 4. 阴影部分的面积 (1)规则图形:按规则图形的面积公式去求 (2)不规则图形:采用“转化”的数学思想方法把不规则图形的面积采用“割补法”、“等积变形法”、“平移法”、“旋转法”等转化为规则图形的面积相加减,课前预测你很棒,A,B。
13、,课时33 与圆有关的位置关系,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 点与圆的位置关系 (1)点与圆的位置关系有三种:点在圆内、点在圆上、点在圆外如果圆的半径是r,点到圆心的距离为d,那么:点在圆上_;点在圆内_;点在圆外_ (2)过三点的圆: 经过三点作圆:经过在同一直线上的三点不能作圆;经过不在同一直线上的三点,有且只有一个圆 三角形的外接圆:经过三角形各顶点的圆叫做三角形的外接圆;外接圆的圆心叫做三角形的外心;这个三角形叫做这个圆的内接三角形 三角形外接圆的作法:确定外心:作任意两边。