2.3.1 直线与平面垂直的判定,2.3 直线、平面垂直的判定及其性质,第二章 点、直线、平面之间的位置关系,思考?,一条直线 与一个平面垂直的意义是什么?,(一)直线与平面垂直的定义,如果一条直线 l 和一个平面内的任意一条直线都垂直,我们就说直线 l 和平面 互相垂直. 记作l ,l叫做的垂线,
直线与平面垂直Tag内容描述:
1、2.3.1 直线与平面垂直的判定,2.3 直线、平面垂直的判定及其性质,第二章 点、直线、平面之间的位置关系,思考?,一条直线 与一个平面垂直的意义是什么?,(一)直线与平面垂直的定义,如果一条直线 l 和一个平面内的任意一条直线都垂直,我们就说直线 l 和平面 互相垂直. 记作l ,l叫做的垂线, 叫做 l的垂面, l与的交点P叫做垂足,1.如果一条直线 l 和一个平面内的无数条直线都垂直,则直线 l和平面 互相垂直( ),思考:,(性质定理),2.b是平面内任一直线,a,则ab (),a,D,B,A,C,B,D,C,容易发现,当且仅当折痕AD是BC边上的高时,AD所在直线与。
2、2.3 直线、平面垂直的判定及其性质,第二章 点、直线、平面之间的位置关系,2.3.1 直线与平面垂直的判定,一.回顾复习:,1.直线和平面的位置关系 :,(1)直线在平面内 (2)直线和平面平行(3)直线和平面相交,垂直是一种特殊的相交,l,o,D,C,B,A,m,E,1.直线与平面垂直的定义:,如果直线 与平面 内的任意一条直线都垂直,我们就说直线 和平面 互相垂直。记作:,垂足,直线与平面的一条边垂直,2.直线与平面垂直的画法:,思考,除定义外,如何判断一条直线与平面垂直呢?,能不能把线面垂直问题转化为线线垂直问题?,线面平行的判定:,空间问题 平。
3、第二章 点、直线、平面之间的位置关系2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定学习目标1.探究直线与平面垂直的判定定理,培养学生的空间想象能力.2.掌握直线与平面垂直的判定定理的应用,培养学生分析问题、解决问题的能力.3.让学生明确直线与平面垂直在立体几何中的地位.合作学习一、设计问题,创设情境日常生活中,我们对直线与平面垂直有很多感性认识,比如,旗杆与地面的位置关系,大桥的桥柱与水面的位置关系等,都给我们以直线与平面垂直的印象.问题 1:如果一条直线垂直于一个平面的无数条直线 ,那么这条直线是否与这个。
4、训练4直线与平面垂直的判定与性质一、选择题1.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一个底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是()A.相交 B.平行 C.异面 D.相交或平行答案B解析由线面垂直的性质可得.2.若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OAB B.平面OACC.平面OBC D.平面ABC答案C解析由线面垂直的判定定理知OA垂直于平面OBC.3.对两条不相交的空间直线a与b,必存在平面,使得下列结论正确的是()A.a,b B.a,bC.a,b D.a,b答案B解析对于A,当a与b是异面直线时,A错误;对于B,若a。
5、8.6.3 平面与平面垂直二 课标要求 知识点 平面与平面垂直的性质定理 知识导学 平面与平面垂直的其他性质与结论 1如果两个平面互相垂直,那么经过第一个平面内一点垂直于第二个平面的直线在第一个平面内即 ,A,Ab,bb. 2如果两个平面互。
6、 8.5 直线直线、平面垂直的判定与性质平面垂直的判定与性质 最新考纲 考情考向分析 1.以立体几何的定义、 公理和定理为出发点, 认识和理解空间中线面垂直的有关性质与 判定定理. 2.能运用公理、定理和已获得的结论证明一 些空间图形的垂直关系的简单命题. 直线、平面垂直的判定及其性质是高考中的 重点考查内容,涉及线线垂直、线面垂直、 面面垂直的判定及其应用等内容题型主要 以解答题的形式出现,解题要求有较强的推 理论证能力,广泛应用转化与化归的思想. 1直线与平面垂直 (1)定义 如果直线 l 与平面 内的任意一条直线都垂直,则直。
7、直线、平面垂直的性质编稿:丁会敏 审稿:王静伟【学习目标】1掌握直线与平面垂直的性质定理,并能解决有关问题;2掌握两个平面垂直的性质定理,并能解决有关问题;3能综合运用直线与平面、平面与平面的垂直、平行的判定和性质定理解决有关问题【要点梳理】要点一:直线与平面垂直的性质1.基本性质文字语言:一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线.符号语言:图形语言:2.性质定理文字语言:垂直于同一个平面的两条直线平行.符号语言:图形语言:3直线与平面垂直的其他性质(1)若两条平行线中的一条垂直于一个。
8、直线、平面垂直的判定编稿:丁会敏 审稿:王静伟【学习目标】1了解空间直线和平面的位置关系;2掌握直线与平面、平面与平面垂直的判定定理; 3能利用直线与平面、平面与平面垂直的定义、判定定理解决与其相关的问题 【要点梳理】要点一:直线与直线垂直的定义两条直线垂直的定义:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直。要点诠释:空间中两直线垂直可能是相交垂直,也可能是异面垂直,即两条直线互相垂直时可能没有垂足。要点二:直线与平面垂直的定义与判定1.直线和平面垂直的定义如果。
9、直线、平面垂直的判定编稿:丁会敏 审稿:王静伟【学习目标】1了解空间直线和平面的位置关系;2掌握直线与平面、平面与平面垂直的判定定理; 3能利用直线与平面、平面与平面垂直的定义、判定定理解决与其相关的问题。 【要点梳理】要点一:直线与直线垂直的定义两条直线垂直的定义:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直。要点诠释:空间中两直线垂直可能是相交垂直,也可能是异面垂直,即两条直线互相垂直时可能没有垂足。要点二:直线与平面垂直的定义与判定1.直线和平面垂直的定义如。
10、直线、平面垂直的性质编稿:丁会敏 审稿:王静伟【学习目标】1掌握直线与平面垂直的性质定理,并能解决有关问题;2掌握两个平面垂直的性质定理,并能解决有关问题;3能综合运用直线与平面、平面与平面的垂直、平行的判定和性质定理解决有关问题【要点梳理】要点一:直线与平面垂直的性质1.基本性质文字语言:一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线.符号语言:图形语言:2.性质定理文字语言:垂直于同一个平面的两条直线平行.符号语言:图形语言:3直线与平面垂直的其他性质(1)若两条平行线中的一条垂直于一个。
11、8.6.1 直线与直线垂直 知识点 异面直线所成的角 1定义:已知两条异面直线 a,b,经过空间任一点 O 作直线 aa,bb,我们把 a与 b所成的 或叫作异面直线 a与 b 所成的角或夹角 2范围:. 3当 时,a 与 b 互相垂直,记。
12、1.2.3空间中的垂直关系第1课时直线与平面垂直基础过关1.已知m,n表示两条不同直线,表示平面.下列说法正确的是()A.若m,n,则mnB.若m,n,则mnC.若m,mn,则nD.若m,mn,则n答案B解析方法一若m,n,则m,n可能平行、相交或异面,A错;若m,n,则mn,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m,mn,则n或n,C错;若m,mn,则n与可能相交,可能平行,也可能n,D错.方法二如图,在正方体ABCDABCD中,用平面ABCD表示.A项中,若m为AB,n为BC,满足m,n,但m与n是相交直线,故A错.B项中,m,n,满足mn,这是线面垂直的性质,故。
13、1.2.3空间中的垂直关系第1课时直线与平面垂直一、选择题1若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A平面OAB B平面OACC平面OBC D平面ABC答案C解析OAOB,OAOC且OBOCO,OA平面OBC.2直线a直线b,直线b平面,则a与的关系是()Aa BaCa Da或a答案D解析若a,b平面,可证得ab;若a,过a作平面,c,b平面,c,则bc,ac,于是ba.故答案为D.3已知空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A垂直且相交 B相交但不一定垂直C垂直但不相交 D不垂直也不相交答案C解析如图,取BD中点O,连接AO,CO,则BDAO,BDCO,AOOCO,BD平面AOC,B。
14、 第 1 页 / 共 20 页 第第 41 讲:直线与平面、平面与平面垂直讲:直线与平面、平面与平面垂直 一、课程标准 1、以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理; 2、能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题. 二、基础知识回顾 知识梳理 1. 直线与平面垂直 (1)定义 如果直线 l 与平面 内的任意一条直线都垂直,则直线。
15、1.2.3空间中的垂直关系第1课时直线与平面垂直学习目标1.理解直线与平面垂直的定义及性质.2.掌握直线与平面垂直的判定定理及推论,并会利用定理及推论解决相关的问题知识点一直线与平面垂直的定义及性质1直线与直线垂直如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直2直线与平面垂直的定义及性质定义及符号表示图形语言及画法有关名称重要结论如果一条直线(AB)和一个平面()相交于点O,并且和这个平面内过交点(O)的任何直线都垂直我们就说这条直线和这个平面互相垂直,记作AB把直线AB画成和表示平。
16、 第 1 页 / 共 12 页 第第 41 讲:直线与平面、平面与平面垂直讲:直线与平面、平面与平面垂直 一、课程标准 1、以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理; 2、能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题. 二、基础知识回顾 知识梳理 1. 直线与平面垂直 (1)定义 如果直线 l 与平面 内的任意一条直线都垂直,则直线。
17、8 8. .6.26.2 直线与平面垂直直线与平面垂直 1已知ABC,若直线 lAB,lAC,直线 mBC,mAC,则 l,m 的位置关系是 A相交 B异面 C平行 D不确定 答案 C 解析 依题意知 l平面 ABC,m平面 ABC, lm。
18、8.6.2 直线与平面垂直直线与平面垂直 A 级基础过关练 1已知直线 m,b,c 和平面 ,下列条件中,能使 m 的是 Amb,mc,b,c Bmb,b CmbA,b Dmb,b 2ABC 所在的平面为 ,直线 lAB,lAC,直线 mB。
19、62.3垂直关系第1课时直线与平面的垂直学习目标 1了解直线与平面垂直的定义,两异面直线垂直的定义2.理解并掌握直线与平面垂直的判定定理,并会应用之判断直线与平面垂直. 3.掌握并会应用直线与平面垂直的性质,理解平行与垂直之间的关系知识链接生活中处处都有直线和平面垂直的例子,如旗杆和地面、路灯与地面等等在判断线面平行时我们有判定定理,那么判断线面垂直又有什么好办法呢?预习导引1直线与平面垂直的概念如果直线l与平面内的任意一条直线都垂直,我们就说直线l与平面互相垂直,记作l直线l叫作平面的垂线;平面叫作直线l的垂面2。
20、8.6.2 直线与平面垂直一 考点考点 学习目标学习目标 核心素养核心素养 异面直线所成的角 会用两条异面直线所成角的定义,找出或作出异面直线 所成的角,会在三角形中求简单的异面直线所成的角 直观想象逻辑推理 数学运算 导学聚焦 考点考点 。