有关三角形的几何证明题

几何证明专题宝山区、嘉定区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD边的延几何证明东城区19.如图,在ABC中,BAC=90,ADBC于点D.BF平分ABC交AD于点E,交AC于点F.求证:AE=AF.1

有关三角形的几何证明题Tag内容描述:

1、第16课时 三角形与三角形全等百色中考命题规律与预测近五年中考考情 2019年中考预测年份 考查点 题型 题号 分值三角形的内角和 选择题 3来源:学科网ZXXK三角形的重心 选择题 52018全等三角形的判定与性质 解答题 22(1)10分2017 全等三角形的判定与性质 解答题 22(2) 4分三角形的内角和 选择题 12016全等三角形的判定与性质、三角形的内角和 解答题 22 9分三角形的稳定性 选择题 1三角形的三边关系、三角形高线 选择题 122015全等三角形的判定与性质 解答题 22(1)10分全等三角形的判定与性质 解答题 22(1)2014全等三角形的判定与性。

2、第17课时 等腰三角形与直角三角形百色中考命题规律与预测近五年中考考情 2019年中考预测年份 考查点 题型 题号 来源:学& 科&网Z&X&X&K分值来源:Zxxk.Com 来源:学+科+网 来源:学科网2018 未单独考查2017 等腰三角形的判定与 性质、勾股定理 解答题 25 4分2016 含30度角的直角三角 形 选择题 6 3分2015 未单独考查2014 等腰三角形的性质、 线段的垂直平分线 填空题 17 3分预计将考查等腰三角形和直角三角形的判定与性质、勾股定理等基本知识,常以本课时内容为依据和手段,与其他知识综合考查,考查形式多样 .来源:学科网ZXXK百色中考考题感。

3、百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲。

4、百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲。

5、1第二节 三角形的有关概念及性质姓名:_ 班级:_ 用时:_分钟1(2018福建中考)下列各组数中,能作为一个三角形三边边长的是( )A1,1,2 B1,2,4C2,3,4 D2,3,52(2018河北中考)下列图形具有稳定性的是( )3(2017衢州中考)如图,直线 ABCD,A70,C40,则E 等于( )A30 B40 C60 D704(2018贵阳中考)如图,在ABC 中有四条线段 DE,BE,EF,FG,其中有一条线段是ABC 的中线,则该线段是( )A线段 DE B线段 BEC线段 EF D线段 FG5(2017成都中考)在ABC 中,ABC234,则A 的度数为_6(2017福建中考)如图,ABC 中,D,E 分别是 AB,AC 的中点,连线 DE.。

6、1第二节 三角形的有关概念及性质要题随堂演练1(2018泰安中考)如图,将一张含有 30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244,则1 的大小为( )A14 B16 C90 D442(2018南宁中考)如图,ACD 是ABC 的外角,CE 平分ACD,若A60,B40,则ECD等于( )A40 B45 C50 D553(2018日照中考)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则1( )A30 B25 C20 D154(2018常德中考)如图,已知 BD 是ABC 的角平分线,ED 是 BC 的垂直平分线,BAC90,AD3,则 CE 的长为( )A6 B5 C4 。

7、题型五几何图形折叠的有关计算 针对演练1. 如图,在RtABC中,ACB90,CDAB于点D,将BCD沿CD翻折,点B的第1题图对应点恰好落在斜边AB的中点E处,若RtABC的面积为2,则RtABC的周长为()A. 4 B. 42C. 6 D. 622. (2019重庆一中模拟)如图,在ABC中,ABAC5,tanA,BC,点D是AB边上一点,连接CD,将BCD沿着CD翻折得B1CD,DB1AC且交AC于点E,则DE的长为()A. B. 1 C. D. 3第2题图3. (2019重庆九龙坡区模拟)如图,点E是矩形ABCD的边CD上一点,把ADE沿AE对折,使点D恰好落在BC边上的F点处已知折痕AE10,且CECF43,那么该矩形的周长为()A. 48 B. 64 。

8、中考总复习:正多边形与圆的有关的证明和计算知识讲解(基础)责编:常春芳【考纲要求】1了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心正。

9、中考总复习:正多边形与圆的有关的证明和计算巩固练习(提高)【巩固练习】一、选择题1. 将一个底面半径为5 cm,母线长为12 cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是( )度A.60 B.90 C.120 D.1502某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO8米,母线AB与底面半径OB的夹角为,则圆锥的底面积是( )平方米A.9 B.16 C. 25 D.363某花园内有一块五边形的空地如图所示,为了美化环境,现计划在五边形各顶点为圆心,2m长为半径的扇形区域内(阴影部分)种上花草,那么种上花草的扇形区域总面积是( )A6m2 B。

10、中考总复习:正多边形与圆的有关的证明和计算巩固练习(基础)【巩固练习】一、选择题1在半径为12的O中,60的圆心角所对的弧长是( )A6 B4 C2 D2一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A1 B C D3如图,正三角形的内切圆半径为1,那么这个正三角形的边长为( )A2 B3 C D4已知一个圆锥的侧面展开图是一个半径为9,圆心角为120的扇形,则该圆锥的底面半径等于( )A9 B27 C3 D105如图所示在ABC中,ABAC,AB8,BC12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是( )A B C D6(2015金华)如图,正方形ABCD和正A。

11、中考总复习:正多边形与圆的有关的证明和计算知识讲解(提高)责编:常春芳【考纲要求】1了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心正。

12、中考专题复习:圆的有关计算与证明解答题1.ABC的内切圆O与BC,CA,AB分别相切于点D、E、F,且AB=11cm,BC=16cm,CA=15cm,求AF、BD、CE的长?2.如图,在44的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形O、A、B分别是小正方形的顶点,求扇形OAB的弧长,周长和面积(结果保留根号及)3.如图,直线y= 与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P与y轴相切于点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,求横坐标为整数的点P的个数.4.如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF的中点,ADBC于点。

13、图形变换有关的计算与证明1.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角形的斜边上,AC与DM , DN分别交于点E , F , 把DEF绕点D旋转到一定位置,使得DE=DF , 则BDN的度数是()A.105B.115。

14、专题(四),与圆有关的计算和证明,(1)构造思想:构建矩形转化线段;构建“相似”基本图研究线段;构造垂径定理模型:弦长一半、弦心距、半径、弓高(知二推二);构造勾股定理模型(已知线段长度);构造三角函数(已知有角度的情况). (2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题. (3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系.,圆的有关计算与证明是中考的必考内。

15、圆的有关计算与证明解答题 1.ABC 的内切圆O 与 BC, CA,AB 分别相切于点 D、E、F ,且 AB=11cm,BC=16cm,CA=15cm,求AF、BD、CE 的长?2.如图,在 44 的方格纸中(共有 16 个小方格),每个小方格都是边长为 1 的正方形O、A、B 分别是小正方形的顶点,求扇形 OAB 的弧长,周长和面积(结果保留根号及 )3.如图,直线 y= 与 x 轴、y 轴分别相交于 A,B 两点 ,圆心 P 的坐标为(1,0),圆 P 与 y 轴相切于点 O.若将圆 P 沿 x 轴向左移动,当圆 P 与该直线相交时,求横坐标为整数的点 P 的个数.4.如图所示,已知 F 是以 O 为圆心,BC 为直径的半圆。

16、图形变换有关的计算与证明1.一副三角板叠在一起如图放置,最小锐角的顶点 D 恰好放在等腰直角三角形的斜边上,AC 与 DM , DN 分别交于点 E , F , 把DEF 绕点 D 旋转到一定位置,使得 DE=DF , 则BDN 的度数是( )A. 105 B. 115 C. 120 D. 1352.如图所示,OAC 和BAD 都是等腰直角三角形,ACO=ADB=90,反比例函数 y= 在第一象限的图象经过点 B,与 OA 交于点 P,且 OA2AB2=18,则点 P 的横坐标为( ) A. 9 B. 6 C. 3 。

17、 1 题型一:综合法 【例1】若 11 0 ab ,则下列结论不正确的是 ( ) 22 ab 2 abb 2 ba ab abab 【考点】综合法 【难度】2 星 【题型】选择 【关键词】无 【解析】 取2a ,3b 代入可得。 【答案】D。 【例2】如果数列 n a是等差数列,则( ) 。 (A) 1845 aaaa (B) 1845 aaaa (C) 1845 aaaa (D) 1845 a aa a 【考点】综合法 【难度】2 星 【题型】选择 【关键词】无 【解析】 由等差数列的性质:若mnpq 则 qpnm aaaa 【答案】 (B) 。 【例3】在ABC中若2 sinbaB,则 A 等于( ) (A)30或 60 (B)45或 60 (C)60或 120 (D)30或 150 【考点。

18、第四章 三角形,第18讲 等腰三角形、等边三角形、直角三角形,01,02,03,04,目录导航,课 前 预 习,80,22,B,C,A,D,9或1,考 点 梳 理,垂直平分线,三,60,一半,中线,直角,一半,课 堂 精 讲,B,65,37,50或20或80,A,C,3,A,(1,0),往年 中 考,A,。

19、几何证明东城区19. 如图,在 ABC 中, BAC=90, AD BC 于点 D. BF 平分 ABC 交 AD 于点 E,交 AC 于点 F. 求证: AE=AF. 19.证明: BAC=90, FBA+ AFB=90. -1 分 AD BC, DBE+ DEB=90- 2 分 BE 平分 ABC, DBE= FBA. -3 分 AFB= DEB. -4 分 DEB= FEA, AFB= FEA. AE=AF. -5 分西城区19如图, AD平分 BC, DA于点 , B的中点为 E, AC(1)求证: E (2)点 F在线段 上运动,当 FE时,图中与 DF全等的三角形是_EDCBA【解析】 (1)证明: AD平分 BC, 2, BD于点 ,。

20、几何证明专题宝山区、嘉定区23.(本题满分 12 分,第(1)小题 6 分,第(2)小题 6 分)如图 6,在正方形 ABCD中,点 M是边 BC上的一点(不与 B、 C重合) ,点 N在CD边的延长线上,且满足 90N,联结 、 A, M与边 D交于点 E.(1)求证; ;(2)如果 2,求证: E2.23.证明:(1)四边形 ABCD是正方形 , 90BCDA1 分 90M N N 1 分 18ADC 901 分 B1 分 1 分 NM 1 分(2)四边形 ACD是正方形 AC平分 BD和 A 4521B , 4521B1分 N .2 ADM 51 分 5.2C .NAEC , 90 4NE A1 分BA图 6CBANDME图 6 ACM NE1 分 1 分 AE21 分长宁区23 (本题满分 12 。

【有关三角形的几何证明题】相关PPT文档
【有关三角形的几何证明题】相关DOC文档
标签 > 有关三角形的几何证明题[编号:38876]