习题课教案

习题课共点力的平衡条件的应用 1.重力为G的体操运动员在进行自由体操比赛时,有如图1所示的比赛动作,当运动员竖直倒立保持静止状态时,两手臂对称支撑,夹角为,则() 图1 A.当60时,运动员单手对地面的正压力大小为 B.当120时,运动员单手对地面的正压力大小为G C.当不同时,运动员受到的合力不同

习题课教案Tag内容描述:

1、习题课共点力的平衡条件的应用1.重力为G的体操运动员在进行自由体操比赛时,有如图1所示的比赛动作,当运动员竖直倒立保持静止状态时,两手臂对称支撑,夹角为,则()图1A.当60时,运动员单手对地面的正压力大小为B.当120时,运动员单手对地面的正压力大小为GC.当不同时,运动员受到的合力不同D.当不同时,运动员与地面之间的相互作用力不相等解析对人受力分析可知,地面对手臂的支持力F1、F2方向竖直向上,两个力的合力与人的重力平衡,有F1F2与无关,由牛顿第三定律知,运动员单手对地面的正压力为,与无关,所以选项A正确,B错误;当不。

2、习题课直线与方程一、选择题1.和直线3x4y50关于x轴对称的直线方程为()A.3x4y50 B.3x4y50C.3x4y50 D.3x4y50答案A解析设所求直线上任意一点(x,y),则此点关于x轴对称的点的坐标为(x,y),因为点(x,y)在直线3x4y50上,所以3x4y50即为所求直线.2.已知A(2,4)关于直线xy10对称的点为B,则B满足的直线方程为()A.xy0 B.xy20C.xy50 D.xy0答案D解析设B(a,b),A(2,4)关于直线xy10的对称点为B,解得即B(3,3),分别代入各选项,只有D符合.3.直线2xy30关于直线xy20对称的直线方程是()A.x2y30 B.x2y30C.x2y10 D.x2y10答案A解析因为直线xy20的斜率为1,。

3、习题课综合法与分析法一、选择题1设x0,y0,A,B,则A,B的大小关系为()AAB BABCA2),q (a2),则()Apq Bp0,y0,且a恒成立,则a的最小值是()A2 B.C2 D17若实数a,b,c满足abc0,abc0,则的值()A一定是正数B一定是负数C可能是0D。

4、 课课 时时 教教 案案 第第 五五 单元单元 第第 1 1 案案 总总第第 案案 课题课题: 5.4.2 抛体运动的规律 2020 年 月 日 教学目标 核心素养 物理观念:知道什么是平抛运动,理解平抛运动的特点 物理观念:了解斜抛运动,知道其受力特点和运动特点 科学思维:理解平抛运动分解方法的研究过程和相关规律 科学思维:灵活应用平抛。

5、习题课函数的基本性质基础过关1下列函数中既是偶函数又在(0,)上是增函数的是()Ayx3 By|x|1Cyx21 Dy2x1解析A项函数为奇函数;B,C项函数为偶函数;D项函数为非奇非偶函数;C项函数在(0,)上是减函数,故选B.答案B2已知f(x)是定义在6,6上的偶函数,且f(3)f(1),则下列各式一定成立的是()Af(0)f(2)Cf(1)f(3) Df(2)f(0)解析因为函数为偶函数,所以f(x)f(x),即f(1)f(1)f(3)答案C3已知f(x)(m1)x22mx3为偶函数,则yf(x)在区间(2,5)上是()A增函数 B减函数C有增有减 D增减性不确定解析yf(x)是偶函数,即f(x)f(x),得m0,所以f(x)x23,画出函数f。

6、习题课简单的线性规划基础过关1.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为()A.2000元B.2200元C.2400元D.2800元答案B解析设需使用甲型货车x辆,乙型货车y辆,运输费用z元,根据题意,得线性约束条件求线性目标函数z400x300y的最小值,解得当时,zmin2200(元).2.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对。

7、习题课直线与方程一、选择题1.和直线3x4y50关于x轴对称的直线方程为()A.3x4y50 B.3x4y50C.3x4y50 D.3x4y50答案A解析设所求直线上任意一点(x,y),则此点关于x轴对称的点的坐标为(x,y),因为点(x,y)在直线3x4y50上,所以3x4y50即为所求直线.2.已知A(2,4)关于直线xy10对称的点为B,则B满足的直线方程为()A.xy0 B.xy20C.xy50 D.xy0答案D解析设B(a,b),A(2,4)关于直线xy10的对称点为B,解得即B(3,3),分别代入各选项,只有D符合.3.直线2xy30关于直线xy20对称的直线方程是()A.x2y30 B.x2y30C.x2y10 D.x2y10答案A解析因为直线xy20的斜率为1,。

8、习题课(二)数列求和一、选择题1数列an的前n项和为Sn,若an, 则S5等于()A1 B. C. D.答案B解析an.S51.2数列,的前n项和为()A. B. C. D.答案B解析由数列通项公式,得前n项和Sn.3已知数列an的通项an2n1,nN,由bn所确定的数列bn的前n项和是()An(n2) B.n(n4)C.n(n5) D.n(n7)答案C解析a1a2an(2n4)n22n,bnn2,bn的前n项和Sn.4在数列an中,已知Sn159131721(1)n1(4n3),nN,则S15S22S31的值是()A13 B76 C46 D76答案B解析S1547a15285729,S2241144,。

9、习题课圆的方程的应用学习目标1.体会数形结合思想在求解与圆有关的最值问题中的应用.2.掌握直线与圆的方程的实际应用.3.了解圆系的方程.知识点一与圆有关的最值问题1.与圆上的点(x,y)有关的最值常见的有以下几种类型:(1)形如u形式的最值问题,可转化为过点(x,y)和(a,b)的动直线斜率的最值问题.(2)形如laxby(b0)形式的最值问题,可转化为动直线yx截距的最值问题.(3)形如m(xa)2(yb)2形式的最值问题,可转化为动点(x,y)到定点(a,b)的距离的平方的最值问题.2.与圆的几何性质有关的最值(1)记O为圆心,圆的半径为r,圆外一点A到圆上距离的。

10、习题课函数及其表示基础过关1若集合Ax|y,By|yx22,则AB()A1,) B(1,)C2,) D(0,)解析集合A表示函数y的定义域,得A1,),集合B表示函数yx22的值域,得B2,),所以AB2,)答案C2已知函数yf(x)的定义域为0,2,则y的定义域为()Ax|0x4 Bx|0x4Cx|0x1 Dx|0x1解析函数y的定义域满足:0x1.答案D3若函数f(x)x2axa在区间0,2上的最大值为1,则实数a()A1 B1 C2 D2解析函数f(x)x2axa的图像为开口向上的抛物线,函数的最大值在区间的端点取得,f(0)a,f(2)43a,或解得a1.答案B4已知函数yf(x)的定义域为1,5,则yf(3x5)的定义。

11、习题课数学归纳法一、选择题1用数学归纳法证明“2nn21对于nn0的自然数n都成立”时,第一步证明中的起始值n0应取()A2 B3C5 D62用数学归纳法证明11)时,第一步应验证不等式()A12,f(8),f(16)3,f(32).观察上述结果,可推测出一般结论()Af(2n) Bf(n2)Cf(2n) D以上都不正确5用数学归纳法证明不等式1(nN)成立,其初始值至少应取()A7 B8C9 D106已知数列an的前n项和Snn2an(n2),而a11。

12、习题课简单的线性规划学习目标1.加深对二元一次不等式组及其几何意义的了解.2.能熟练地用平面区域表示二元一次不等式组.3.准确利用线性规划知识求解目标函数的最值.4.会求一些简单的非线性函数的最值.预习导引1.二元一次不等式的几何意义对于任意的二元一次不等式AxByC0(或0时,(1)AxByC0表示直线AxByC0上方的区域;(2)AxByC0表示直线AxByC0下方的区域.2.用图解法解线性规划问题的步骤:(1)确定线性约束条件;(2)确定线性目标函数;(3)画出可行域;(4)利用线性目标函数(直线)求出最优解.3.线性规划在实际问题中的题型主要掌握两种类型:一。

13、习题课函数及其表示学习目标1.简单函数的值域的基本求法(重、难点);2.会求复合函数的定义域(难点);3.会用熟悉函数的图像作简单函数的图像(重点)1下列图形是函数y|x|(x2,2)的图像的是()解析在y|x|中,yx(0x2)是直线yx上满足0x2的一条线段(包括端点),yx(2x0,所以0.答案A4写出与函数y1(x0)相等的一个函数为_。

14、习题课(二)数列求和学习目标1.掌握分组分解求和法的使用情形和解题要点.2.掌握奇偶并项求和法的使用情形和解题要点.3.掌握裂项相消求和法的使用情形和解题要点.4.进一步熟悉错位相减法知识点一分组分解求和法思考求和:123.答案123(123n)1(nN)总结分组分解求和的基本思路:通过分解每一项重新组合,化归为等差数列和等比数列求和知识点二奇偶并项求和法思考求和:122232429921002.答案122232429921002(1222)(3242)(9921002)(12)(12)(34)(34)(99100)(99100)(123499100)5 050.梳理奇偶并项求和的基本思路:有些数列单独看求和困难,但相邻项。

15、习题课直线与方程学习目标1.掌握与直线有关的对称问题.2.通过解决最值问题体会数形结合思想与转化化归思想的应用.知识点一对称问题1.点关于直线对称设点P(x0,y0),l:AxByC0(A,B不全为0),若点P关于l的对称点为点Q(x,y),则l是线段PQ的垂直平分线,故PQl且PQ的中点在l上,解方程组即可得点Q的坐标.常用的结论(1)A(a,b)关于x轴的对称点为A(a,b).(2)B(a,b)关于y轴的对称点为B(a,b).(3)C(a,b)关于原点的对称点为C(a,b).(4)D(a,b)关于直线yx的对称点为D(b,a).(5)E(a,b)关于直线yx的对称点为E(b,a).(6)P(a,b)关于直线xm的对称点。

16、习题课数列求和基础过关1数列,的前n项和为()A. B. C. D.答案B解析由数列通项公式,得,得前n项和Sn().2已知数列an的通项an2n1,由bn所确定的数列bn的前n项之和是()An(n2) B.n(n3)C.n(n5) D.n(n7)答案C解析a1a2an(2n4)n22n.bnn2,bn的前n项和Sn.3已知数列an前n项和为Sn159131721(1)n1(4n3),则S15S22S31的值是()A13 B76 C46 D76答案B解析S1547a15285729,S2241144,S31415a3141512161,S15S22S3129446176.故选B.4若lg xlg x2lg x9lg x1。

17、习题课习题课 导数的应用导数的应用 学习目标 1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函 数的单调性、极值与最值的综合应用 知识点一 函数的单调性与其导数的关系 定义在区间(a,b)内的函数 yf(x): f(x)的正负 f(x)的单调性 f(x)0 单调增函数 f(x)cos x f(x)成 立,则( ) A. 2f 6 f 4 B. 3f 。

18、习题课数列求和学习目标1.能由简单的递推公式求出数列的通项公式.2.掌握数列求和的几种基本方法预习导引1基本求和公式(1)等差数列的前n项和公式:Snna1d.(2)等比数列前n项和公式:当q1时,Snna1;当q1时,Sn.2an与Sn的关系数列an的前n项和Sna1a2a3an,则an3拆项成差求和经常用到下列拆项公式:(1);(2);(3).题型一分组求和例1求和:Sn222.解当x1时,Sn222(x2x4x2n)2n2n2n;当x1时,Sn4n.综上知,Sn规律方法某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列的。

19、习题课复数一、选择题1复数z对应的点在第二象限,它的模为3,实部是,则是()A2i B2iC.2i D.2i2复数的虚部是()A.i B.Ci D3若z12i,则等于()A1 B1Ci Di4若复数zcos isin (i是虚数单位),复数z2的实部,虚部分别为a,b,则下列结论正确的是()Aab0 Ba2b21C. D.5复平面内点A,B,C对应的复数分别为i,1,42i,由ABCD按逆时针顺序作ABCD,则|等于()A5 B. C. D.6已知复数z的模为2,则|zi|的最大值为()A1 B2C. D3二、填空题7i是虚数单位,复数z满足(1i)z2,则z的实部为_8如果z123i,z2,则_.9若复数b(bR)所对应的点在直线xy1上,则b的值为_。

【习题课教案】相关PPT文档
23.3课题学习图案设计练ppt习题课件
【习题课教案】相关DOC文档
习题课 圆的方程的应用 学案(含答案)
习题课 数学归纳法 同步练习(含答案)
习题课 函数及其表示 学案(含答案)
习题课(二) 数列求和 学案(含答案)
习题课 直线与方程 学案(含答案)
习题课 导数的应用 学案(含答案)
习题课:数列求和 学案(含答案)
习题课 复数 同步练习(含答案)
标签 > 习题课教案[编号:91234]