1.3 简单的逻辑联结词学习目标 1.了解联结词“且”“或”“非”的含义.2.会用联结词“且”“或”“非”联结或改写某些数学命题,并判断新命题的真假.3.通过学习,明白对条件的判定应该归结为判断命题的真假.知识点 1 且或非(1)且 “p 且 q”就是用联结词“且”把命题 p 和命题 q 联结起来,
人教A版高中数学选修1-11.1.1命题课件Tag内容描述:
1、1.3 简单的逻辑联结词学习目标 1.了解联结词“且”“或”“非”的含义.2.会用联结词“且”“或”“非”联结或改写某些数学命题,并判断新命题的真假.3.通过学习,明白对条件的判定应该归结为判断命题的真假.知识点 1 且或非(1)且 “p 且 q”就是用联结词“且”把命题 p 和命题 q 联结起来,得到的新命题,记作 pq.(2)或 “p 或 q”就是用联结词“或”把命题 p 和命题 q 联结起来,得到的新命题,记作 pq.(3)非 一般地,对一个命题 p 全盘否定,就得到一个新命题,记作p,读作“非 p”或“p 的否定”.【预习评价】 (正确的打“”,错误的打。
2、3.4 生活中的优化问题举例,第三章 导数及其应用,学习目标 1.了解导数在解决实际问题中的作用. 2.掌握利用导数解决简单的实际生活中的优化问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 生活中的优化问题,1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为 . 2.利用导数解决优化问题的实质是求函数最值. 3.解决优化问题的基本思路:,优化问题,上述解决优化问题的过程是一个典型的 过程.,数学建模,思考辨析 判断正误 1.生活中常见到的收益最高、用料最省等问题就是数学中的最大、最小值问题.( ) 2.解。
3、2.2 双曲线2.2.1 双曲线及其标准方程学习目标 1.掌握双曲线的定义.2.掌握用定义法和待定系数法求双曲线的标准方程.3.理解双曲线标准方程的推导过程,并能运用标准方程解决相关问题.知识点 1 双曲线的定义把平面内与两个定点 F1,F 2 的距离的差的绝对值等于常数(小于|F 1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.【预习评价】思考 双曲线定义中,将“小于|F 1F2|”改为“等于|F 1F2|”或“大于| F1F2|”的常数,其他条件不变,点的轨迹是什么?提示 当距离之差等于|F 1F2|时,动点的轨迹就。
4、1.2.1 充分条件与必要条件,第一章 1.2 充分条件与必要条件,学习目标 1.理解充分条件、必要条件的意义. 2.会求(判定)某些简单命题的条件关系. 3.通过对充分条件、必要条件的概念的理解和运用,培养分析、判断和归纳的逻辑思维能力.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 充分条件与必要条件,充分,必要,充分,必要,思考 “x2”是“x3”的_条件,“x3”是“x2”的_条件.,知识点二 充分条件、必要条件与集合的关系,充分,必要,梳理 Ax|x满足条件p,Bx|x满足条件q,特别提醒:(1)pq,qp,p是q的充分不必要条件; (2)pq,qp,p是。
5、3.1.1 变化率问题 3.1.2 导数的概念,第三章 3.1 变化率与导数,学习目标 1.了解导数概念的实际背景. 2.会求函数在某一点附近的平均变化率. 3.会利用导数的定义求函数在某点处的导数.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 函数yf(x)从x1到x2的平均变化率,假设如图是一座山的剖面示意图,并建立如图所示平面直角坐标系.A是出发点,H是山顶.爬山路线用函数yf(x)表示.,自变量x表示某旅游者的水平位置,函数值yf(x)表示此时旅游者所在的高度.设点A的坐标为(x1,y1),点B的坐标为(x2,y2).,思考1 若旅游者从点A爬到点B,自变。
6、2.2 椭圆2.2.1 椭圆及其标准方程学习目标 1.掌握椭圆的定义,会用椭圆的定义解决实际问题.2.掌握用定义法和待定系数法求椭圆的标准方程.3.理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.知识点 1 椭圆的定义平面内与两个定点 F1,F 2 的距离的和等于常数(大于|F 1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.【预习评价】 (正确的打“”,错误的打“”)(1)已知点 F1(1,0),F 2(1,0),动点 P 满足|PF 1|PF 2|4,则点 P 的轨迹是椭圆.( )(2)已知点 F1(1,0),F 2(1,0),动点 P 满足|PF。
7、2.3.1 抛物线及其标准方程,第二章 2.3 抛物线,学习目标 1.理解抛物线的定义及焦点、准线的概念. 2.掌握抛物线的标准方程. 3.明确抛物线标准方程中p的几何意义,能解决简单的求抛物线标准方程问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 抛物线的定义,思考1 平面内,到两定点距离相等的点的轨迹是什么?,答案 连接两定点所得线段的垂直平分线.,思考2 平面内,到一定点和一条定直线(点不在定直线上)距离相等的点的轨迹是直线还是曲线呢?,答案 曲线,梳理 (1)定义:平面内与一定点F和一条定直线l(不经过点F) 的点的轨迹叫。
8、1.4.1 全称量词 1.4.2 存在量词,第一章 1.4 全称量词与存在量词,学习目标 1.理解全称量词、全称命题的定义. 2.理解存在量词、特称命题的定义. 3.会判断一个命题是全称命题还是特称命题,并会判断它们的真假.,问题导学,达标检测,题型探究,内容索引,问题导学,思考 观察下列命题: (1)所有偶函数的图象都关于y轴对称; (2)每一个四边形都有外接圆; (3)任意实数x,x20. 以上三个命题有什么共同特征?,知识点一 全称量词与全称命题,答案 都使用了表示“全部”的量词,如“所有”、“每一个”、“任意”.,梳理,全称量词,xM,p(x),知识点二 存在。
9、2.2.1 双曲线及其标准方程,第二章 2.2 双曲线,学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程及其求法. 3.会利用双曲线的定义和标准方程解决简单的问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 双曲线的定义,思考 若取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,拉开或闭拢拉链,笔尖经过的点可画出一条曲线,那么曲线上的点应满足怎样的几何条件?,答案 如图,曲线上的点满足条件:|MF1|MF2|常数(小于|F1F2|);如果改变一下笔。
10、1.3 简单的逻辑联结词,第一章 常用逻辑用语,学习目标 1.了解逻辑联结词“且”“或”“非”的含义,会判断含有这类逻辑联结词的命题的真假. 2.结合具体实例,在了解“且”“或”“非”含义的基础上掌握这类联结词的用法.,问题导学,达标检测,题型探究,内容索引,问题导学,思考 观察下面四个命题:12能被3整除;12能被4整除;12能被3整除且能被4整除;12能被3整除或12能被4整除.请分析命题与命题分别有什么关系?,知识点一 用逻辑联结词构成新命题,答案 是由、用“且”联结而成的; 是由、用“或”联结而成的.,梳理,pq,pq,p,p且q,p或q,知识点。
11、第一章 3 全称量词与存在量词,3.3 全称命题与特称命题的否定,学习目标 1.了解含有一个量词的命题的否定的意义. 2.会对含有一个量词的命题进行否定. 3.掌握全称命题的否定是特称命题,特称命题的否定是全称命题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 全称命题的否定,思考 对下列全称命题如何否定? (1)所有奇函数的图像都过原点;,答案 有的奇函数的图像不过原点;,(2)对任意实数x,都有x22x10.,答案 存在实数x,使x22x10.,梳理 要说明一个全称命题是错误的,只需找出一个反例就可以了.实际上是要说明这个全称命题的否。
12、2.1.1 椭圆及其标准方程(一),第二章 2.1 椭 圆,学习目标 1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程. 2.掌握椭圆的定义、标准方程及几何图形.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 椭圆的定义,答案 在纸板上固定两个图钉,绳子的两端固定在图钉上,绳长大于两图钉间的距离,笔尖贴近绳子,将绳子拉紧,移动笔尖即可画出椭圆.,思考 给你两个图钉,一根无弹性的细绳,一张纸板,一支铅笔,如何画出一个椭圆?,梳理 (1)定义:平面内与两个定点F1,F2的距离的和等于 (大于|F1。
13、3.3.2 函数的极值与导数,第三章 3.3 导数在研究函数中的应用,学习目标 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用. 2.掌握函数极值的判定及求法. 3.掌握函数在某一点取得极值的条件.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 极值点与极值的概念,思考 观察函数f(x) 2x的图象.,梳理 (1)极小值点与极小值 如图,函数yf(x)在点xa处的函数值f(a)比它在点xa附近其他点的函数值都小,f(a)0;而且在点xa附近的左侧 ,右侧,则把点a叫做函数yf(x)的极小值点,f(a)叫做函数yf(x)的极小值.,f(。
14、3.1.3 导数的几何意义,第三章 3.1 变化率与导数,学习目标 1.了解导函数的概念,理解导数的几何意义. 2.会求简单函数的导函数. 3.根据导数的几何意义,会求曲线上某点处的切线方程.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 导数的几何意义,(1)切线的概念:如图,对于割线PPn,当点Pn趋近于点P时,割线PPn趋近于确定的位置,这个确定位置的 称为点P处的切线.,直线PT,(2)导数的几何意义:函数f(x)在xx0处的导数就是切线PT的斜率k,即k _f(x0). (3)切线方程: 曲线yf(x)在点(x0,f(x0)处的切线方程为 . 特别提醒:曲线的切线。
15、1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标 1.理解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.2.知道四种命题之间的相互关系以及真假性之间的联系.3.会利用逆否命题的等价性解决问题.知识点 1 四种命题的概念(1)互逆命题:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题(2)互否命题:对于两个命题,如果其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题.其中。
16、1.4.3 含有一个量词的命题的否定学习目标 1.通过探究数学中一些实例,归纳总结出含有一个量词的命题与它们的否定在形式上的变化规律.2.通过例题和习题的学习,能够根据含有一个量词的命题与它们的否定在形式上的变化规律,正确地对含有一个量词的命题进行否定.知识点 1 全称命题的否定全称命题 p:x M,p(x),它的否定p:x 0M , p( x0).【预习评价】已知命题 p:x 2,(x 2)(x1)0,则p 是_.答案 x 02,( x2)(x1)0.知识点 2 特称命题的否定特称命题 p:x 0M ,p(x 0),它的否定p:x M,p( x).【预习评价】已知命题 p:存在实数 m,使不等式。
17、1.1.2 四种命题 1.1.3 四种命题间的相互关系,第一章 1.1 命题及其关系,学习目标 1.了解命题的原命题、逆命题、否命题与逆否命题. 2.理解四种命题之间的关系,会利用互为逆否命题的等价关系判断命题的真假.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 四种命题的概念,答案 命题(1)的条件和结论与命题(2)的条件和结论恰好互换了. 命题(1)的条件与结论恰好是命题(3)条件的否定和结论的否定. 命题(1)的条件和结论恰好是命题(4)结论的否定和条件的否定.,思考 分析下列四个命题,请指出命题(1)的条件和结论分别与其它三个命题的条。
18、1.4.3 含有一个量词的命题的否定,第一章 常用逻辑用语,学习目标 1.了解含有一个量词的命题的否定的意义. 2.会对含有一个量词的命题进行否定. 3.掌握全称命题的否定是特称命题,特称命题的否定是全称命题.,问题导学,达标检测,题型探究,内容索引,问题导学,思考 对下列全称命题如何否定? (1)所有奇函数的图象都过原点;,知识点一 全称命题的否定,答案 有的奇函数的图象不过原点;,(2)对任意实数x,都有x22x10.,梳理,x0M,p(x0),特称,知识点二 特称命题的否定,思考 对下列特称命题如何否定? (1)有些四棱柱是长方体;,答案 所有的四棱柱都不。
19、1.1 命题及其关系1.1.1 命 题学习目标 1.了解命题的概念.2.会判断命题的真假,能够把命题化为“若 p,则q”的形式.知识点 1 命题的定义(1)用语言、符号或式子 表达的,可以判断真假的陈述句叫做命题.(2)判断为真的语句叫做 真命题.(3)判断为假的语句叫做 假命题.【预习评价】思考 (1)“x5”是命题吗?(2)陈述句一定是命题吗?提示 (1)“x5”不是命题,因为它不能判断真假.(2)陈述句不一定是命题,因为不知真假,只有可以判断真假的陈述句才叫做命题.知识点 2 命题的结构从构成来看,所有的命题都由条件和结论两部分构成.在数学中,命题常。
20、1.1.1 命 题,第一章 1.1 命题及其关系,学习目标 1.理解命题的概念. 2.会判断命题的真假. 3.能把命题改写成“若p,则q”的形式.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 命题的概念,答案 (1)都是陈述句; (2)都能够判断真假.,思考 下列语句有什么共同特征? 若直线ab,则直线a和直线b无公共点; 367; 偶函数的图象关于y轴对称; 5能被4整除.,梳理 (1)定义:用语言、符号或式子表达的,可以 的陈述句.,判断真假,真,假,特别提醒:(1)判断一个语句是否为命题的两个要素: 是陈述句,表达形式可以是符号、表达式或语言; 可以。