求导复合函数求导

第二章变化率与导数5简单复合函数的求导法则学习目标1.了解复合函数的概念,掌握复合函数的求导法则.2.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数5简单复合函数的求导法则学习目标1.了解复合函数的概念,掌握复合函数的求导法则.2.能够利用复合函数的求导法则,并结合已经学过的

求导复合函数求导Tag内容描述:

1、并列句和复合句,一、并列句 由并列连词把两个或两个以上的简单句连接起来的句子叫作并列句。常见分类: 1. 表示同等、平行或承接关系,常用连词and,both. . . and,not only. . . but also. . . ,neither. . . nor. . . ,as well as等。 2. 表示转折关系,常用连词but,yet(然而), however(然而), while(而)等。,3. 表示选择关系,常见连词or,not. . . but(不是而是), either. . . or. . . (要么要么)等。 4. 表示因果关系,常见连词because, as,for(因为), so等。 二、复合句 由一个主句和一个或一个以上的从句构成的句子叫作复合句。

2、第13讲 复合句,专题二 语法知识,2020年中考复习课件,单项填空,A,C,(,)1.What do you think of your Junior Middle School,life? I think its colorful _ I am always busy.,A.although,B.because,C.if,D.whenever,(,)2.Everyone wants to reach the top of the mountain, but,some climbers have to give it up _ it is too high.,A.while,B.unless,C.because,D.although,(,)3.If we _ take environmental problems seriously,D,B,the earth _ worse and worse. A.dont; wont be B.wont; isnt C.won。

3、小学数学小升初复合应用题闯关1农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨剩下的煤如果每天烧1.1吨,还可以烧多少天?2某班存放科技书150本,故事书比科技书的2倍少50本,故事书有多少本?3张明与李强两家人共用一个水表,五月份他们两家人共用水80吨,已知每吨水1.5元,该月水费他们两家按3:2分担。五月份张明家要交水费多少元?4学校买4副羽毛球拍和20根跳绳,付出150元,找回11.4元每副羽毛球拍18.4元,每根跳绳多少元?5某市出租车收费标准如下:3千米及3千米以下8元;3千米以上每增加1千米收费1.20元,另外每次付费需另。

4、章末检测(三)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,把答案填在题中的横线上)1.已知点(3,1)和点(4,6)在直线3x2ya0的两侧,那么实数a的取值范围为_.解析根据题意知(92a)(1212a)0,即(a7)(a24)0,解得7a24.答案(7,24)2.若x,y满足则2xy的最大值为_.解析不等式组表示的可行域如图中阴影部分所示.令z2xy,则y2xz,作直线2xy0并平移,当直线过点A时,截距最大,即z取得最大值,由得所以A点坐标为(1,2),可得2xy的最大值为2124.答案43.不等式x22x的解集是_.解析因为x22x,所以x22x0,解得x0或x2,所以不。

5、章末检测卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若幂函数y(m23m3)xm2m1的图象不过原点,则实数m的值是()A.1 B.2 C.1或2 D.以上都不对解析由题意得m23m31,即m1或2.当m1时,m2m11;m2时,m2m11.又函数图象不过原点,m2m11,即m1.答案A2.函数f(x)lg (1x1)的图象的对称点为()A.(1,1) B.(0,0) C.(1,1) D.(1,1)解析f(x)lg lg f(x),又1x1,函数yf(x)为奇函数.f(x)lg的图象关于(0,0)对称.答案B3.设a1,函数f(x)logax在区间a,2a上的最大值。

6、章末复习考点一指数函数、对数函数、幂函数的综合应用例1已知函数f(x)lg(10x1)x,g(x),且函数g(x)是奇函数(1)判断函数f(x)的奇偶性,并求实数a的值;(2)若对任意的t(0,)不等式g(t21)g(tk)0恒成立,求实数k的取值范围;(3)设h(x)f(x)x,若存在x(,1,使不等式g(x)h(lg(10b9)成立,求实数b的取值范围解(1)函数f(x)的定义域为R,任意xR有f(x)lg(10x1)(x)lgxlg(10x1)lg 10xxlg(10x1)xf(x),f(x)是偶函数g(x)是奇函数,g(x)的定义域为R,由g(0)0,得a1.(2)由(1)知g(x)3x,易知g(x)在R上单调递增,又g(x)为奇函数g(t21)g(tk)0恒成立,g(t21)g(。

7、高中数学专题05 指数函数、对数函数、幂函数【母题原题1】【2019年高考天津卷文数】已知,则a,b,c的大小关系为A B CD【答案】A【解析】,故选A【名师点睛】利用指数函数、对数函数的单调性时,要根据底数与的大小进行判断【母题原题2】【2018年高考天津卷文数】已知,则的大小关系为A B C D【答案】D【解析】由题意可知:,即,综上可得:故选D【名师点睛】由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指。

8、6指数函数、幂函数、对数函数增长的比较基础过关1今年小王用7 200元买了一台笔记本电脑,由于电子技术的飞速发展,计算机成本不断降低,每隔一年这种笔记本电脑的价格降低,则三年后这种笔记本的价格是()A7 200 B7 200C7 200 D7 200解析由于小王用7 200元买了一台笔记本电脑,每隔一年这种笔记本电脑的价格降低,故一年后这种笔记本电脑的价格为7 2007 2007 200,两年后,价格为7 2007 200,三年后这种笔记本电脑的价格为7 200.答案B2如图给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到。

9、6指数函数、幂函数、对数函数增长的比较学习目标1.了解三种函数的增长特征.2.初步认识“直线上升”“指数爆炸”和“对数增长”.3.尝试函数模型的简单应用.知识点一同类函数增长特点当a1时,指数函数yax是增函数,并且当a越大时,其函数值的增长就越快.当a1时,对数函数ylogax是增函数,并且当a越小时,其函数值的增长就越快.当x0,n0时,幂函数yxn是增函数,并且当x1时,n越大其函数值的增长就越快.知识点二指数函数、幂函数、对数函数的增长差异一般地,在区间(0,)上,尽管指数函数yax(a1)、幂函数yxn(n0)与对数函数ylogax(a1)都是增函。

10、章末检测卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)12log63log6等于()A0B1C6Dlog6答案B解析原式2log623log63log661.2函数y的定义域是()A(,2) B(2,)C(2,3)(3,) D(2,4)(4,)答案C解析利用函数有意义的条件直接运算求解由得x2且x3,故选C.3下列函数中,既是偶函数又在区间(0,)上单调递减的是()AyByexCyx21Dylg|x|答案C解析A项,y是奇函数,故不正确;B项,yex为非奇非偶函数,故不正确;C、D两项中的两个函数都是偶函数,且yx21在(0,)上是减函数,ylg|x|在(0,)上是增函数,故选C.4.已知函数f。

11、章末复习课网络构建核心归纳1指数和对数(1)分数指数的定义:a(a0,m,nN,m2),a(a0,m,nN,m2)(2)如同减法是加法的逆运算,除法是乘法的逆运算一样,对数运算是指数运算的逆运算abNlogaNb(a0,a1,N0)由此可得到对数恒等式:alogaNN,blogaab.(3)对数换底公式logaN(a0,b0,a1,b1,N0)的意义在于把各个不同底数的对数换成相同底数的对数,这样,一可以进行换算,二可以通过对数表求值(4)指数和对数的运算法则有:amanamn,logaMlogaNloga(MN),(am)namn,logaMnnlogaM,amanamn,logaMlogaNloga.(aR,m,nR)(M,NR,a0,a1)2指数函数、。

12、6指数函数、幂函数、对数函数增长的比较一、选择题1.下列函数中,增长速度最慢的是()A.y6x B.ylog6xC.yx6 D.y6x考点题点答案B解析对数函数增长的速度越来越慢,故选B.2.下面对函数f(x)与g(x)x在区间(0,)上的衰减情况的说法正确的是()A.f(x)的衰减速度越来越慢,g(x)的衰减速度越来越快B.f(x)的衰减速度越来越快,g(x)的衰减速度越来越慢C.f(x)的衰减速度越来越慢,g(x)的衰减速度越来越慢D.f(x)的衰减速度越来越快,g(x)的衰减速度越来越快考点题点答案C解析在区间(0,)上,指数函数yax(0a1)和对数函数ylogax(0a1)都是减函数,它们的衰减。

13、34 高二文科第 5 讲尖子-目标教师版 5.1 复合函数 知识点睛 1复合函数的概念 一般地,若是 的一个函数,而 又是的一个函数,记函数的定义域yt( )yf ttx( )tg x( )yf t 为,函数的值域为,若,则也是的一个函数,即,称为A( )tg xBAB yx( ) ( )yf tf g x 复合函数,记作当时,函数的值记作 ( )yf g xxay ( )f g a 对于复合函数来讲,我们叫为内层函数,把叫外层函数 ( )yf g x( )g x( )f x 2复合函数的定义域 的定义域为,指的是的取值范围为,而不是的范围为; ( )f g xab,xab,( )g xab, 已知函数的定义域为,求函数的定义域,只需由解。

14、幂函数与复合函数初步第8讲满分晋级函数8级幂函数与复合函数初步函数9级函数与方程函数7级对数函数新课标剖析当前形势函数概念与指数函数、对数函数、幂函数在近五年北京卷(理)中考查515分高考要求内容要求层次具体要求ABC幂函数的概念通过实例,了解幂函数的概念幂函数,的图象其性质结合函数,的图象了解它们的变化规律北京高考解读2008年2009年2010年(新课标)2011年(新课标)2012年(新课标)第2题 5分第13题 5分第3题5分第13题5分第6题 5分第14题 5分第6题 5分第8题 5分第13题 5分第14题 5分8.1幂函数我们来看一下我们初中学过的一。

15、幂函数与复合函数初步第8讲满分晋级函数8级幂函数与复合函数初步函数9级函数与方程函数7级对数函数新课标剖析当前形势函数概念与指数函数、对数函数、幂函数在近五年北京卷(理)中考查515分高考要求内容要求层次具体要求ABC幂函数的概念通过实例,了解幂函数的概念幂函数,的图象其性质结合函数,的图象了解它们的变化规律北京高考解读2008年2009年2010年(新课标)2011年(新课标)2012年(新课标)第2题 5分第13题 5分第3题5分第13题5分第6题 5分第14题 5分第6题 5分第8题 5分第13题 5分第14题 5分8.1幂函数我们来看一下我们初中学过的一。

16、 38 1、复合函数的性质: 对于单调性,有“同步增,异步减” 对于奇偶性,若每层函数均有奇偶性,则有“全奇才奇,有偶则偶” 对于周期性,内层函数为周期函数的复合函数仍为周期函数 2、抽象函数往往有它所对应的具体函数模型,常见的抽象函数模型有: 正比例函数: f xyf xf y; 指数函数: f xyf x f y; 对数函数: f xyf xf y; 幂函数: f xyf x f y 3、函数的零点 满足 0f a 的a叫做函数 f x的零点,即方程 0f x 的实数根,也即函数 yf x的图象 与x轴的交点的横坐标 零点定理:若函数 yf x在闭区间,ab上的图象是连续不断的曲线,并。

17、5简单复合函数的求导法则一、选择题1下列函数不是复合函数的是()Ayx31 Bycos(x)Cy Dy(2x3)42函数y(x)5的导数为()Ay5(x)4By5(x)4(1)Cy5(x)4(1)Dy5(x)4(x)3函数yxln(2x5)的导数为()Aln(2x5) Bln(2x5)C2xln(2x5) D.4已知直线yx1与曲线yln(xa)相切,则a的值为()A1 B2C1 D25曲线yf(x)e2x1在点(0,2)处的切线与直线y0和yx围成的三角形的面积为()A. B.C. D16已知点P在曲线y上,为曲线在点P处的切线的倾斜角,则的取值范围是()A0,) B,)C(, D,)二、填空题7函数ysin 2xcos 3x的导数是_。

18、5简单复合函数的求导法则一、选择题1函数y2sin 3x的导数y等于()A2cos 3x B2cos 3xC6sin 3x D6cos 3x考点简单复合函数的导数题点简单的复合函数的导数答案D解析y2(cos 3x)(3x)6cos 3x.2已知函数f(x)24x3,则f的值是()A. B.ln 2Cln 2 D1考点简单复合函数的导数题点简单的复合函数的导数答案C解析f(x)24x3ln 2(4x3)24x1ln 2,fln 2.3设曲线yaxln(x1)在点(0,0)处的切线方程为y2x,则a等于()A0 B1C2 D3考点简单复合函数的导数题点简单复合函数的导数的综合应用答案D解析ya,由题意得当x0时,y2,即a12,所以a3.4曲线ye2x1在点(0,2)处的切。

19、5简单复合函数的求导法则学习目标1.了解复合函数的概念,掌握复合函数的求导法则.2.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导运算(仅限于形如f(axb)的导数)知识点一复合函数的概念已知函数y2x5ln x,yln(2x5),ysin(x2)思考1这三个函数都是复合函数吗?答案函数yln(2x5),ysin(x2)是复合函数,函数y2x5ln x不是复合函数思考2试说明函数yln(2x5)是如何复合的?答案设u2x5,则yln u,从而yln(2x5)可以看作是由yln u和u2x5,经过“复合”得到的,即y可以通过中间变量u表示为自变量x的函数梳理 一般地,。

20、第二章 变化率与导数,5 简单复合函数的求导法则,学习目标,1.了解复合函数的概念,掌握复合函数的求导法则. 2.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导运算(仅限于形如f(axb)的导数).,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 复合函数的概念,已知函数y2x5ln x,yln(2x5),ysin(x2). 思考1 这三个函数都是复合函数吗?,答案 函数yln(2x5),ysin(x2)是复合函数,函数y2x5ln x不是复合函数.,思考2 试说明函数yln(2x5)是如何复合的?,答案 设u2x5,则yln u,从而yln(2x5)可以看作是由yl。

【求导复合函数求导】相关PPT文档
【求导复合函数求导】相关DOC文档
标签 > 求导复合函数求导[编号:18685]