高一分段函数

高中数学专题05指数函数、对数函数、幂函数【母题原题1】【2019年高考天津卷文数】已知,则a,b,c的大小关系为ABCD【答案】A【解析】,,,章末复习考点一指数函数、对数函数、幂函数的综合应用例1已知函数f(x)lg(10 x1)x,g(x),且函数g(x)是奇函数(1)判断函数f(x)的奇偶性

高一分段函数Tag内容描述:

1、习题课集合运算的综合应用基础过关1.若集合Ax|23,则AB()A.x|2x1 B.x|2x3C.x|1x1 D.x|1x3解析Ax|23,ABx|20,则()A.AB B.ABC.AB D.ABR解析由32x0得x,所以ABx|x2,ABx|x2,故选A.答案A3.全集UR,Ax|5x1,Bx|x2,则(U A)B_.解析U Ax|x5,或x1,(U A)B,如图:(U A)Bx|x5,或1x2.答案x|x5,或1x24.已知集合M。

2、2.4.2计算函数零点的二分法基础过关1已知函数f(x)的图象如图,其中零点的个数及可以用二分法求解的个数分别为()A4,4B3,4C5,4D4,3答案D解析由图象知函数f(x)与x轴有4个交点,因此零点个数为4,从左往右数第4个交点两侧不满足f(a)f(b)0,因此不能用二分法求零点,而其余3个均可使用二分法求零点2为了求函数f(x)2xx2的一个零点,某同学利用计算器,得到自变量x和函数值f(x)的部分对应值f(x)的值精确到0.01如下表如示:x0.61.01.41.82.22.63.0f(x)1.161.000.680.240.250.701.00则函数f(x)的一个零点所在的区间是()A(0.6,1.0) B(1.4,1.8)C(1.8,。

3、2.4.2计算函数零点的二分法学习目标1.能用二分法求出方程的近似解.2.知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的思想知识链接现有一款三星手机,目前知道它的价格在5001000元之间,你能在最短的时间内猜出与它最近的价格吗?(误差不超过20元),猜价格方案:(1)随机;(2)每次增加20元;(3)每次取价格范围内的中间价,采取哪一种方案好呢?预习导引用二分法求函数零点的一般步骤已知函数yf(x)定义在区间D上,求它在D上的一个零点x0的近似值x,使它与零点的误差不超过正数,即使得|xx0|.用二分法求函数零点的一般步骤如下:。

4、4.3单位圆与正弦函数、余弦函数的基本性质学习目标1.会利用单位圆研究正弦、余弦函数的基本性质.2.能利用正弦、余弦函数的基本性质解决相关的问题知识点正弦、余弦函数的性质正弦函数(ysin x)余弦函数(ycos x)定义域R值域1,1最小值当x2k,kZ时,ymin1当x2k,kZ时,ymin1最大值当x2k,kZ时,ymax1当x2k,kZ时,ymax1周期性周期函数,最小正周期为2单调性在区间,kZ上是增加的;在区间,kZ上是减少的在区间2k,2k,kZ上是减少的;在区间2k,22k,kZ上是增加的思考能否认为正弦函数在单位圆的右半圆是增加的?答案不能,右半圆可以表示无数个。

5、7正切函数71正切函数的定义72正切函数的图像与性质基础过关1已知sin tan 0,那么角是()A第一或第二象限角B第二或第三象限角C第三或第四象限角D第一或第四象限角解析若sin 0,tan 0,则在第二象限;若sin 0,tan 0,则在第三象限答案B2若已知角满足sin ,cos ,则tan ()A. B. C. D.解析由三角函数定义可知tan .答案B3函数f(x)tan,xR的最小正周期为()A.BC2D4解析由2,故选C.答案C4使函数y2tan x与ycos x同时为单调递增的区间是_解析由y2tan x与ycos x的图像知,同时为单调递增的区间为(2k,2k(kZ)和2k,2k)(kZ)答案(2k,2k(kZ)和2k,2k)(kZ。

6、2.4幂函数与二次函数最新考纲考情考向分析1.了解幂函数的概念2.结合函数yx,yx2,yx3,y,y的图象,了解它们的变化情况3.理解并掌握二次函数的定义、图象及性质4.能用二次函数、方程、不等式之间的关系解决简单问题.以幂函数的图象与性质的应用为主,常与指数函数、对数函数交汇命题;以二次函数的图象与性质的应用为主,常与方程、不等式等知识交汇命题,着重考查函数与方程、转化与化归及数形结合思想,题型一般为选择、填空题,中档难度.1幂函数(1)幂函数的定义一般地,形如yx(R)的函数称为幂函数,其中x是自变量,是常数(2)常见的五种。

7、第三章 函数,第一部分 基础过关,增分微专题(三) 函数型,2,目前所学的函数主要有一次函数、正比例函数、二次函数、反比例函数,在解决函数问题的时候要注意每种函数各自的特点形式 类型一、分段函数应用题 分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型,3,【例1】(2019绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已。

8、3指数函数第1课时指数函数的图像与性质基础过关1指数函数yf(x)的图像经过点,那么f(4)f(2)()A8 B16 C32 D64解析设f(x)ax(a0且a1),由条件知f(2),故a2,a2,因此f(x)2x,f(4)f(2)242264.答案D2已知函数f(x)axb(a0,且a1)经过点(1,5),(0,4),则f(2)的值为()A7 B8 C12 D16解析由已知得解得f(x)3,f(2)3437.答案A3函数f(x)3x3(1x5)的值域是()A(0,) B(0,9)C. D.解析1x5,2x32,323x332,于是有f(x)9,即所求函数的值域为.答案C4指数函数y(2a)x在定义域内是减。

9、章末复习考点一指数、对数的运算例1化简:(1) 考点利用指数幂的性质化简求值题点根式与分数指数幂的四则混合运算解原式(2)2log32log3log38考点对数的运算题点指数对数的混合运算解原式log34log3log38log3log399297.反思感悟指数、对数的运算应遵循的原则指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解以达到约分的目的.对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化简、证。

10、章末检测(三)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1若a2又由幂函数yx的单调性知,1.52,1.5223.1,故选C答案C3函数y2log2(x23)(x1)的值域为()A(2,) B(,2)C4,) D3,)解析x1,x234,log2(x23)2,则有y4答案C4已知幂函数f(x)满足f9,则f(x)的图像所分布的象限是()A第一、二象限 B第一、。

11、第2课时习题课指数函数及其性质基础过关1设y140.9,y280.48,y3,则()Ay3y1y2 By2y1y3Cy1y2y3 Dy1y3y2解析40.921.8,80.4821.44,21.5,根据y2x在R上是增函数,21.821.521.44,即y1y3y2,故选D.答案D2若82a,a.故选A.答案A3函数yax在0,1上的最大值与最小值之和为3,则a()A0 B1 C2 D3解析由已知得a0a13,1a3,a2.答案C4函数y2x2ax在(,1)内单调递增,则a的取值范围是_解析由复合函。

12、6指数函数、幂函数、对数函数增长的比较一、选择题1.下列函数中,增长速度最慢的是()A.y6x B.ylog6xC.yx6 D.y6x考点题点答案B解析对数函数增长的速度越来越慢,故选B.2.下面对函数f(x)与g(x)x在区间(0,)上的衰减情况的说法正确的是()A.f(x)的衰减速度越来越慢,g(x)的衰减速度越来越快B.f(x)的衰减速度越来越快,g(x)的衰减速度越来越慢C.f(x)的衰减速度越来越慢,g(x)的衰减速度越来越慢D.f(x)的衰减速度越来越快,g(x)的衰减速度越来越快考点题点答案C解析在区间(0,)上,指数函数yax(0a1)和对数函数ylogax(0a1)都是减函数,它们的衰减。

13、6指数函数、幂函数、对数函数增长的比较基础过关1今年小王用7 200元买了一台笔记本电脑,由于电子技术的飞速发展,计算机成本不断降低,每隔一年这种笔记本电脑的价格降低,则三年后这种笔记本的价格是()A7 200 B7 200C7 200 D7 200解析由于小王用7 200元买了一台笔记本电脑,每隔一年这种笔记本电脑的价格降低,故一年后这种笔记本电脑的价格为7 2007 2007 200,两年后,价格为7 2007 200,三年后这种笔记本电脑的价格为7 200.答案B2如图给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到。

14、6指数函数、幂函数、对数函数增长的比较学习目标1.了解三种函数的增长特征.2.初步认识“直线上升”“指数爆炸”和“对数增长”.3.尝试函数模型的简单应用.知识点一同类函数增长特点当a1时,指数函数yax是增函数,并且当a越大时,其函数值的增长就越快.当a1时,对数函数ylogax是增函数,并且当a越小时,其函数值的增长就越快.当x0,n0时,幂函数yxn是增函数,并且当x1时,n越大其函数值的增长就越快.知识点二指数函数、幂函数、对数函数的增长差异一般地,在区间(0,)上,尽管指数函数yax(a1)、幂函数yxn(n0)与对数函数ylogax(a1)都是增函。

15、章末检测卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)12log63log6等于()A0B1C6Dlog6答案B解析原式2log623log63log661.2函数y的定义域是()A(,2) B(2,)C(2,3)(3,) D(2,4)(4,)答案C解析利用函数有意义的条件直接运算求解由得x2且x3,故选C.3下列函数中,既是偶函数又在区间(0,)上单调递减的是()AyByexCyx21Dylg|x|答案C解析A项,y是奇函数,故不正确;B项,yex为非奇非偶函数,故不正确;C、D两项中的两个函数都是偶函数,且yx21在(0,)上是减函数,ylg|x|在(0,)上是增函数,故选C.4.已知函数f。

16、章末复习课网络构建核心归纳1指数和对数(1)分数指数的定义:a(a0,m,nN,m2),a(a0,m,nN,m2)(2)如同减法是加法的逆运算,除法是乘法的逆运算一样,对数运算是指数运算的逆运算abNlogaNb(a0,a1,N0)由此可得到对数恒等式:alogaNN,blogaab.(3)对数换底公式logaN(a0,b0,a1,b1,N0)的意义在于把各个不同底数的对数换成相同底数的对数,这样,一可以进行换算,二可以通过对数表求值(4)指数和对数的运算法则有:amanamn,logaMlogaNloga(MN),(am)namn,logaMnnlogaM,amanamn,logaMlogaNloga.(aR,m,nR)(M,NR,a0,a1)2指数函数、。

17、章末检测(三)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,把答案填在题中的横线上)1.已知点(3,1)和点(4,6)在直线3x2ya0的两侧,那么实数a的取值范围为_.解析根据题意知(92a)(1212a)0,即(a7)(a24)0,解得7a24.答案(7,24)2.若x,y满足则2xy的最大值为_.解析不等式组表示的可行域如图中阴影部分所示.令z2xy,则y2xz,作直线2xy0并平移,当直线过点A时,截距最大,即z取得最大值,由得所以A点坐标为(1,2),可得2xy的最大值为2124.答案43.不等式x22x的解集是_.解析因为x22x,所以x22x0,解得x0或x2,所以不。

18、章末检测卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若幂函数y(m23m3)xm2m1的图象不过原点,则实数m的值是()A.1 B.2 C.1或2 D.以上都不对解析由题意得m23m31,即m1或2.当m1时,m2m11;m2时,m2m11.又函数图象不过原点,m2m11,即m1.答案A2.函数f(x)lg (1x1)的图象的对称点为()A.(1,1) B.(0,0) C.(1,1) D.(1,1)解析f(x)lg lg f(x),又1x1,函数yf(x)为奇函数.f(x)lg的图象关于(0,0)对称.答案B3.设a1,函数f(x)logax在区间a,2a上的最大值。

19、章末复习考点一指数函数、对数函数、幂函数的综合应用例1已知函数f(x)lg(10x1)x,g(x),且函数g(x)是奇函数(1)判断函数f(x)的奇偶性,并求实数a的值;(2)若对任意的t(0,)不等式g(t21)g(tk)0恒成立,求实数k的取值范围;(3)设h(x)f(x)x,若存在x(,1,使不等式g(x)h(lg(10b9)成立,求实数b的取值范围解(1)函数f(x)的定义域为R,任意xR有f(x)lg(10x1)(x)lgxlg(10x1)lg 10xxlg(10x1)xf(x),f(x)是偶函数g(x)是奇函数,g(x)的定义域为R,由g(0)0,得a1.(2)由(1)知g(x)3x,易知g(x)在R上单调递增,又g(x)为奇函数g(t21)g(tk)0恒成立,g(t21)g(。

20、高中数学专题05 指数函数、对数函数、幂函数【母题原题1】【2019年高考天津卷文数】已知,则a,b,c的大小关系为A B CD【答案】A【解析】,故选A【名师点睛】利用指数函数、对数函数的单调性时,要根据底数与的大小进行判断【母题原题2】【2018年高考天津卷文数】已知,则的大小关系为A B C D【答案】D【解析】由题意可知:,即,综上可得:故选D【名师点睛】由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指。

【高一分段函数】相关PPT文档
【高一分段函数】相关DOC文档
标签 > 高一分段函数[编号:30322]