加减法解二元一次方程组

2.3 解二元一次方程组(二)A 组1用加减消元法解方程组 下列做法正确的是(D)2x 5y 10, 5x 3y 6, )A. 要消去 y,可以将52B. 要消去 x,可以将3(5)C. 要消去 y,可以将53D. 要消去 x,可以将(5)22二元一次方程组 的解是(B)x y 6,x 3y 2)A

加减法解二元一次方程组Tag内容描述:

1、2.3 解二元一次方程组(二)A 组1用加减消元法解方程组 下列做法正确的是(D)2x 5y 10, 5x 3y 6, )A. 要消去 y,可以将52B. 要消去 x,可以将3(5)C. 要消去 y,可以将53D. 要消去 x,可以将(5)22二元一次方程组 的解是(B)x y 6,x 3y 2)A. B. x 5,y 1) x 4,y 2)C. D. x 5,y 1) x 4,y 2)3已知 x, y 满足方程组 则 x y 的值为_1 _3x y 4,x 3y 2, )4用加减消元法解方程组 时,将方程 的两边同乘_2_,再把所得2x 4y 6, 3x 2y 17 )的方程与相_加_,就可以消去未知数 y.5解下列方程组:(1)x y 5, 2x y 4. )【解】 ,得 3x9, x3.把 x。

2、用代入消元法解二元一次方程组,北京十中 蔡建宁,一斤黄瓜和一斤茄子的单价和为5元,考考你,【活动一】,一斤茄子比两斤黄瓜贵2元,一斤黄瓜和一斤茄子的单价各是多少元?,解决问题,X,y,例1:解方程组,小结:,y=5-x,x=1,(1)变形,(2)代入,(3)求解,(4)回代求解,二元一次方程组,用含一个未知数的代数式表示另一个未知数,一元一次方程,方程组的一个未知数的值,(1)选择恰当方程变形,(2)代入另一个方程,观察下列方程组,你会选择哪个方程变形,并说出变形的结果,【活动二】,说一说,由_得,_,观察下列方程组,你会选择哪个方程变形,并说。

3、82 消元解二元一次方程组82.1 用代入消元法解二元一次方程组【知识与技能】会用代入法解二元一次方程组【过程与方法】初步体会解二元一次方程组的基本思想“消元” 【情感态度与价值观】通过研究解决问题的方法,培养学生合作交流意识与探究精神重点:用代入消元法解二元一次方程组难点:探索如何用代入法将“二元”转化为“一元”的消元过程1 课时教学过程设题导入: 篮球联赛中,每场比赛都要分出胜负,每队胜一场得 2 分负一场得 1 分,某队为了争取较好的名次,想在全部 10 场比赛中得到 16 分,那么这个队胜负场数分别是多少?解:设。

4、,代入消元法(第一课时),课前准备,同学们,课本、练习本、笔和草稿纸,你准备好了吗?,请把二元一次方程 2y + x = 3 改写成:,1.用含 y 的式子表示 x 的形式,即:x =,2.用含 x 的式子表示 y 的形式,即:y =,比一比,谁最快!,3 2y,如果一个全虾堡比一杯圣代多6元,买一杯圣代和两个全虾堡共需30元,你能算出一杯圣代多少元吗?一个全虾堡是多少元呢?,x,y,= 6,x,2y,= 30,+,解:设一杯圣代为x元,一个全虾堡为y元,则,解:设一杯圣代为x元,一个全虾堡为(x+6)元,则,x+2(x+6)=30,探究新知,-,观察 你所列的二元一次方程组和一元一次方程。

5、2.3 解二元一次方程组(2),用“加减消元法“解二元一次方程组,主要步骤:,基本思路:,4.写解,3. 解,2. 代,1. 变,1、解二元一次方程组的基本思路是什么?,2、用代入法解方程的步骤是什么?,复习:,解二元一次方程组,解: + 得:(x+y)+(2x-y)=4+5,x=3,把x=3代入得,y=4-3=1,还能用其他的方法解这个方程组吗?,即:3x=9,上面方程组的基本思路是什么? 主要步骤有哪些?,上面解方程组的基本思路仍然是“消元”. 主要步骤是: 通过两式相加(减)消去一个未知数。 这种解二元一次方程的方法叫做加减消元法,简称加减法.,试一试,一、填空题:,1。

6、2.3解二元一次方程组(2),解二元一次方程组的基本思想是什么?,用代入法解二元一次方程组的一般步骤:,1、选取一个方程,将它写成用一个未知数的代数式表示另一个未知数,记作方程。,2、把代入另一个方程,得到一个一元一次方程,解这个一元一次方程,得出一个未知数的值。,3、把这个未知数的值代入,求得另一个未知数的值.,4、写出方程组的解.,例1:解方程组,还有没有其它方法?不用代入法能否消去其中的未知数y?,观察:此方程组中,(1)未知数 y 的系数有什么特点?,(2)怎么样才能把这个未知数y消去?,3x +2y =13 3x -2y =5,解:+ 。

7、2.3解二元一次方程组(1),根据有关资料,一般产后母象 的质量是小象质量的40倍,如果分娩前母象质量 等于产后母象质量与小象质量的和,现在你能帮 饲养员求出小象和产后母象的大约质量吗?,合作学习,某动物园的大象饲养员称得一头即将分娩的母象 质量为4100千克,,饲养员很想在分娩前知道腹中 小象的大约质量,你能帮她解决吗?,(二元),消元,(一元),这种解方程组的方法 称为代入消元法,简 称代入法代入法是 解二元一次方程组的 重要方法之一,y,x,y,x,x,x,40x+x=4100,例1 解方程组,和,运用新知,形成方法,2y-3(y-1)=1,2y-3y+3=1,Y=2,2y。

8、2.3 解二元一次方程组(1),回顾复习,1、什么是二元一次方程组?,由两个一次方程组成,并且含有两个未知数的方程组, 叫做二元一次方程组.,2、用含x的代数式表示y:2x+y=2,3、用含y的代数式表示x:2x-7y=8,我国古代数学名著孙子算经上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几头?,请思考:,解:,设有笼中有鸡x只,有兔y只.则可列出方程组:,x + y = 35,2x + 4y = 94,一个苹果和一个梨的质量合计200g (如图1),这个苹果的质量加上10g的砝码恰好与这个梨的质量相等(如图2).问苹果和梨的质量各多少g ?,x +y = 200,y = x+10,。

9、第 1 页,共 4 页人教七下数学8.2 消元解二元一次方程组练习题一、选择题1. 已知方程组 ,x 与 y 的值之和等于 2,则 k 的值为( )3+5=+22+3= A. 4 B. C. 3 D. 4 32. 已知二元一次方程组 ,则 x-y 等于( )2=334=3A. B. C. D. 1.1 1.2 1.3 1.43. 方程 4x+3y=16 的所有非负整数解为( )A. 1 个 B. 2 个 C. 3 个 D. 无数个4. 若关于 x,y 的二元一次方程组 无解,则 a 的值为 =43=3 ( )A. B. 1 C. D. 313 15. 已知 x,y 满足方程组 ,则 x+y 的值为( )+6=1232=8A. 9 B. 7 C. 5 D. 36. 已知单项式 与 的和仍是单项式,则 x、y 的值为( )2 。

10、 一、知识点 1、二元一次方程的定义及解、二元一次方程组的解、二元一次方程的定义及解、二元一次方程组的解 2、代入法解二元一次方程组、代入法解二元一次方程组 二、标准例题 例 1:若方程 mx2y=3x+4 是关于 x、y 的二元一次方程,则 m 的取值范围是_ 【答案】m3 总结:总结:本题考查了移项、二元一次方程的定义题目难度不大,掌握二元一次方程的定义是解决本题的关本题考查了移项、二元一次方程的定义题目难度不大,掌握二元一次方程的定义是解决本题的关 键键 例 2:若方程 6kx2y=8 有一组解,则 k 的值等于( ( ) A B C D来源:Zxx。

11、,声音,求解二元一次方程,加减消元法,2、用代入法解方程的关键是什么?,1、根据等式性质填空:,思考:若a=b,c=d,那么a+c=b+d吗?,3、解二元一次方程组的基本思路是什么?,bc,bc,(等式性质1),(等式性质2),若a=b,那么ac= .,若a=b,那么ac= .,消元:,温故而知新:,一元,用代入法解方程组,温故而知新:,还有别的方法吗?,认真观察此方程组中各个未知数的系数有什么特点,还有没有其它的解法.并尝试一下能否求出它的解,尝试发现、探究新知,第一站发现之旅,2x-5y=7 2x+3y=-1 ,观察方程组中的两个方程,未知数x的系数相等,都是2。把两个方程两边分别相。

12、82.2 用加减消元法解二元一次方程组【知识与技能】在代入消元的基础上掌握加减消元法解方程组的思想,并能正确运用加减消元法解方程组【过程与方法】通过小组合作、讨论的过程,提高学生的交流表达能力、归纳总结能力及自学能力【情感态度与价值观】在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流重点:掌握加减消元法解方程组难点:正确的运用加减消元法解方程组1 课时教学过程设题导入: 我们知道,对于方程组 ,可以用代入消元法求解这个方程组的两个x y 22, 2x y 40 )方程中,y 的系数有。

13、 专题专题 10 用加减法二元一次方程组用加减法二元一次方程组 一、知识点 1 1、用加减法解二元一次方程组、用加减法解二元一次方程组 2 2、应用解二元一次方程组的有关知识,解决与二元一次方程相关联的问题。、应用解二元一次方程组的有关知识,解决与二元一次方程相关联的问题。 二、标准例题 例 1:用加减法解下列方程组: (1)4( + 2) = 1 5 3( + 2) = 3 2 (2) 3;2 4 + 2;1 5 =2 3:6 4 2:4 5 = 1 【答案】 (1) = 1 = 3 ; (2) = 2 = 3 【解析】解: (1)4( + 2) = 1 5 3( + 2) = 3 2 整理得 5x+4y7,3x+2y3 2,得 x1, 将 x。

14、 第 1 页 共 4 页 二元一次方程组解法(二二元一次方程组解法(二)-加减加减法法(基础)(基础)巩固练习巩固练习 【巩固练习】【巩固练习】 一一、选择题选择题 1用加减消元法解二元一次方程组时,必须使这两个方程中( ) A某个未知数的系数是 1 B同一个未知数的系数相等 C同一个未知数的系数互为相反数 D某一个未知数的系数的绝对值相等 2已知 2 |23| (2)0xyxy,则 22 xxyy的值是( ) A1 B3 C5 D7 3用加减消元法解二元一次方程组 231 543 xy xy ,下列步骤可以消去未知数 x 的是 ( ) A4+3 B2-5 C5+2 D5-2 4解方程组 3 759 yx xy 。

15、第 1 页 共 5 页 二元一次方程组解法(二二元一次方程组解法(二)-加减加减法法(提高提高)巩固练习巩固练习 【巩固练习】【巩固练习】 一一、选择题选择题 1如果 x:y3:2,并且 x+3y27,则 x 与 y 中较小的值是( ). A3 B6 C9 D12 2若关于 x、y 的二元一次方程组 5 , 9 , xyk xyk 的解也是二元一次方程 2x+3y6 的解,则 k 的值为( ). A 3 4 B 3 4 C 4 3 D 4 3 3已知方程组 54 358 xym xy 中,x、y 的值相等,则 m 等于( ). A1 或-1 B1 C5 D-5 4.如果 324 xya xy 的解都是正数,那么a 的取值范围是( ). Aa2; B. 4 3 a ; C. 4 2 。

16、 第 1 页 共 4 页 二元一次方程组解法二元一次方程组解法(二)(二)-加减法加减法(基础基础)知识讲解知识讲解 【学习目标】【学习目标】 1. 掌握加减消元法解二元一次方程组的方法; 2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组; 3会对一些特殊的方程组进行特殊的求解 【要点梳理】【要点梳理】 要点一、要点一、加减消元法解二元一次方程组加减消元法解二元一次方程组 两个二元一次方程中同一未知数的系数相反或相等时, 将两个方程的两边分别相加或相 减, 就能消去这个未知数, 得到一个一元一次方程, 这种方法叫。

17、 第 1 页 共 4 页 二元一次方程组解法二元一次方程组解法(提高提高)知识讲解知识讲解 【学习目标】【学习目标】 1. 掌握加减消元法解二元一次方程组的方法; 2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组; 3会对一些特殊的方程组进行特殊的求解 【要点梳理】【要点梳理】 要点一、要点一、加减消元法解二元一次方程组加减消元法解二元一次方程组 两个二元一次方程中同一未知数的系数相反或相等时, 将两个方程的两边分别相加或相 减, 就能消去这个未知数, 得到一个一元一次方程, 这种方法叫做加减消元法, 简称加减法 。

18、8.2消元解二元一次方程组,第一课时,第二课时,人教版 数学 七年级 下册,代入消元法解二元一次方程组,第一课时,返回,2,篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?,(1)如果设胜的场数是x,,则负的场数是10-x,可得一元一次方程,;,(2)如果设胜的场数是x,负的场数是y,可得二元一次方程组,那么怎样解这个二元一次方程组呢?,3,1.掌握代入消元法解二元一次方程组的步骤.,2.了解解二元一次方程组的基本思路.,素养目标,3.初步体会化归思想在数学学习中的运用.,一个苹。

19、,苏科数学,10.3解二元一次方程组(1),南京二十九中初级中学 金蓓,苏科数学,探索活动,问题1 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何? 能用二元一次方程组解决这个问题吗? 能用一元一次方程解决这个问题吗? 观察所列的方程组和方程,你有什么启发?,苏科数学,三、数学运用,例1、解方程组,【例题讲解】,苏科数学,三、数学运用,例2、用代入法解方程组,苏科数学,三、数学运用,用代入法解下列方程组,【巩固练习】,苏科数学,四、小结思考,【拓展提升】解方程组,。

20、,苏科数学,10.3解二元一次方程组(2),南京二十九中初级中学 金蓓,苏科数学,探索活动,问题1 解方程组,除了代入消元法,有没有其他消元方法?,苏科数学,探索活动,问题2 解方程组,苏科数学,探索活动,问题3 解方程组,苏科数学,三、数学运用,1、用加减消元法解下列方程组,【巩固练习】,苏科数学,三、数学运用,2、解下列二元一次方程组,【巩固练习】,苏科数学,四、小结思考,【拓展提升】解方程组 , 你能用几种方法解这个方程组?,。

【加减法解二元一次方程组】相关PPT文档
【加减法解二元一次方程组】相关DOC文档
标签 > 加减法解二元一次方程组[编号:175423]