解三角形全章知识复习与巩固 编稿:张林娟 审稿:孙永钊 【学习目标】 1. 通过对任意三角形边长和角度关系的度量,掌握正弦定理、余弦定理,并能解一些简单的三角形; 2. 能够运用正弦定理、余弦定理等知识和方法解决一些简单的几何计算问题及相关的实际问题. 【知识网络】 【要点梳理】 要点一:正弦定理
高中数学必修5知识讲解_不等关系_提高Tag内容描述:
1、解三角形全章知识复习与巩固编稿:张林娟 审稿:孙永钊【学习目标】1. 通过对任意三角形边长和角度关系的度量,掌握正弦定理、余弦定理,并能解一些简单的三角形;2. 能够运用正弦定理、余弦定理等知识和方法解决一些简单的几何计算问题及相关的实际问题.【知识网络】【要点梳理】要点一:正弦定理中,各边和它所对角的正弦比相等,即:要点诠释:(1)正弦定理适合于任何三角形,且(为的外接圆半径).(2)应用正弦定理解决的题型:已知两角与一边,求其它;已知两边与一边的对角,求其它.(3)在“已知两边与一边的对角,求其它”的类。
2、三角形中的几何计算编稿:张林娟 审稿:孙永钊 【学习目标】1.进一步巩固正弦定理和余弦定理,并能综合运用两个定理解决三角形的有关问题;2.学会用方程思想解决有关三角形的问题,提高综合运用知识的能力和解题的优化意识.【要点梳理】要点一:正弦定理和余弦定理的概念正弦定理公式:(其中R表示三角形的外接圆半径)余弦定理公式: 第一形式:第二形式:要点二:三角形的面积公式要点三:利用正、余弦定理解三角形已知两边和一边的对角或已知两角及一边时,通常选择正弦定理来解三角形;已知两边及夹角或已知三边时,通常选择余弦定理。
3、解三角形的应用举例编稿:张林娟 审稿:孙永钊【学习目标】1. 能够利用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的问题;2. 提高运用所学知识解决实际问题的能力,并初步掌握数学建模的思想方法;3. 掌握运用正弦定理、余弦定理解决几何计算问题的方法.【要点梳理】要点一:解三角形应用题的步骤解三角形在实际中应用非常广泛,如测量、航海、几何、物理等方面都要用到解三角形的知识. 实际应用中,首先要弄清题意,画出直观示意图,将实际问题转化为解三角形的问题,再确定是哪类解三角形问题,即应用哪个定理来解决.。
4、数列求和、数列的综合应用编稿:张林娟 审稿:孙永钊【学习目标】1掌握数列的常用求和方法;2注意数列的函数性,能分析解决数列和函数与方程、向量、不等式、平面几何等相结合的数列综合题;3能够用数列知识解决数列综合题及实际应用题【要点梳理】要点一:求数列前项和的几种常用方法1. 常用方法 公式法:如果一个数列是等差或者等比数列,求其前项和可直接利用等差数列或等比数列的前项和公式求和; 倒序相加法:等差数列前n项和的推导方法,即将倒写 后再与相加,从而达到(化多为少)求和的目的,常用于组合数列求和. 裂项相消法:把。
5、数列全章复习与巩固编稿:张林娟 审稿:孙永钊【学习目标】1系统掌握数列的有关概念和公式;2掌握等差数列与等比数列的概念、性质、通项公式与前项和公式,并运用这些知识解决问题;3了解数列的通项公式与前项和公式的关系,能通过前项和公式求出数列的通项公式;4掌握常见的几种数列求和方法.【知识网络】数列的通项通项公式等差中项前n项和公式等差数列性质通项公式等比中项前n项和公式等比数列性质数列数列前n项和数列的递推公式应用【要点梳理】知识点一:等差数列1. 判定一个数列为等差数列的常用方法定义法:(常数)是等差数列;中。
6、第三章 不等式3.1 不等关系与不等式1不等关系不等关系主要有以下几种类型:(1)表示常量与常量之间的不等关系;(2)表示变量与常量之间的不等关系;(3)表示函数与函数之间的不等关系;(4)表示一组变量之间的不等关系2不等式的定义用不等号表示不等关系的式子叫_,如,等用“”或“”连接的不等式叫严格不等式,用“”或“”连接的不等式叫非严格不等式3不等式的分类按成立条件分绝对不等式无论用什么实数代替不等式中的字母都成立,如条件不等式只有用某些实数代替不等式中的字母才能成立,如矛盾不等式无论用什么实数代替不等式中。
7、等差数列编稿:张林娟 审稿:孙永钊【学习目标】1. 理解等差数列的概念,掌握等差数列的通项公式与前项和公式,了解等差数列与一次函数的关系;2. 理解等差数列的性质,并会用性质灵活解决问题;体会等差数列的前n项和公式与二次函数的关系的联系,能用二次函数的知识解决数列问题.3. 能在具体的问题情境中,识别数列的等差关系,并能用有关知识解决相应的问题.【学习策略】数列是特殊的函数,类比一次函数、二次函数等有关知识,研究等差数列的通项公式及前n项和公式的性质特点. 注意方程思想的应用:等差数列的通项公式和前项和公式中,。
8、解三角形全章知识复习与巩固编稿:张林娟 审稿:孙永钊【学习目标】1. 通过对任意三角形边长和角度关系的度量,掌握正弦定理、余弦定理,并能解一些简单的三角形;2. 能够运用正弦定理、余弦定理等知识和方法解决一些简单的几何计算问题及相关的实际问题.【知识网络】【要点梳理】要点一:正弦定理中,各边和它所对角的正弦比相等,即:要点诠释:(1)正弦定理适合于任何三角形,且(为的外接圆半径).(2)应用正弦定理解决的题型:已知两角与一边,求其它;已知两边与一边的对角,求其它.(3)在“已知两边与一边的对角,求其它”的类。
9、一元二次不等式及其解法编稿:张林娟 审稿:孙永钊【学习目标】1. 了解一元二次不等式与相应函数、方程的联系,能借助函数图象解一元二次不等式及一些简单的高次不等式;2. 对给定的一元二次不等式,能设计求解的程序框图;3. 应用一元二次不等式解简单的分式不等式.【要点梳理】要点一:一元二次不等式的概念一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.一元二次不等式的解:使某个一元二次不等式成立的的值.一元二次不等式的解集:一元二次不等式的所有解组成的集合.一般写为集合或区间形式.一元二次不等式的一。
10、三角形中的几何计算编稿:张林娟 审稿:孙永钊 【学习目标】1.进一步巩固正弦定理和余弦定理,并能综合运用两个定理解决三角形的有关问题;2.学会用方程思想解决有关三角形的问题,提高综合运用知识的能力和解题的优化意识.【要点梳理】要点一:正弦定理和余弦定理的概念正弦定理公式:(其中表示三角形的外接圆半径)余弦定理公式: 第一形式:第二形式:要点二:三角形的面积公式要点三:利用正、余弦定理解三角形已知两边和一边的对角或已知两角及一边时,通常选择正弦定理来解三角形;已知两边及夹角或已知三边时,通常选择余弦定理来。
11、解三角形的应用举例编稿:张林娟 审稿:孙永钊【学习目标】1. 能够利用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的问题;2. 提高运用所学知识解决实际问题的能力,并初步掌握数学建模的思想方法;3. 掌握运用正弦定理、余弦定理解决几何计算问题的方法.【要点梳理】要点一:解三角形应用题的步骤解三角形在实际中应用非常广泛,如测量、航海、几何、物理等方面都要用到解三角形的知识. 实际应用中,首先要弄清题意,画出直观示意图,将实际问题转化为解三角形的问题,再确定是哪类解三角形问题,即应用哪个定理来解决.。
12、数列编稿:张林娟 审稿:孙永钊【学习目标】1. 掌握数列的概念与简单表示方法,能处理简单的数列问题;2. 掌握数列及通项公式的概念,理解数列的表示方法与函数表示方法之间的关系;3. 了解数列的通项公式的意义并能根据通项公式写出数列的任一项;4. 理解数列的顺序性、感受数列是刻画自然规律的数学模型,体会数列之间的变量依赖关系.【要点梳理】知识点一、数列的概念一般地,按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项. 数列的一般形式可以写成:简记为,其中数列的第1项,也称首项;数列的第n项,也叫数列的。
13、【巩固练习】一、选择题1已知0a1,则()ABCD2高速公路对行驶的各种车辆的最大限速为120km/h,行驶过程中,同一车道上的车间距d不得小于10m,用不等式表示为( )ABC D3已知,则下面推理中正确的是( )AB C D 4若,则的值为( )A大于0B小于0C等于0D符号不确定5已知,则有( )ABCD6若任意实数,且,则( )ABCD二、填空题7下列命题中的真命题为 ()若, 则ac2bc2;()若,则;()若,则;()若,则8. 若满足,则的取值范围是 9若实数,满足,试确定,的大小关系 10已知,则的大小顺序是 11设,则,由小。
14、数列全章复习与巩固编稿:张林娟 审稿:孙永钊【学习目标】1系统掌握数列的有关概念和公式;2掌握等差数列与等比数列的概念、性质、通项公式与前项和公式,并运用这些知识解决问题;3了解数列的通项公式与前项和公式的关系,能通过前项和公式求出数列的通项公式;4掌握常见的几种数列求和方法.【知识网络】数列的通项通项公式等差中项前n项和公式等差数列性质通项公式等比中项前n项和公式等比数列性质数列数列前n项和数列的递推公式应用【要点梳理】知识点一:等差数列1. 判定一个数列为等差数列的常用方法定义法:(常数)是等差数列;中。
15、【巩固练习】1、 选择题1设,若0,则下列不等式中正确的是()ABCD2下面四个条件中,使成立的充分而不必要的条件是( )ABCD3已知,则下面推理中正确的是( )AB C D 4若,则的值为( )A大于0B小于0C等于0D符号不确定5已知,则有( )ABCD6若任意实数,且,则( )ABCD二、填空题7下列命题中的真命题为 ()若, 则ac2bc2;()若,则;()若,则;()若,则8若实数,满足,试确定,的大小关系 9已知,则的大小顺序是 10设,则,由小到大的排列顺序是 三、解答题11. 如图,反映了某公司产品的销售收入万元与销售量x吨的函数关系,反。
16、不等关系编稿:张林娟 审稿:孙永钊【学习目标】1. 了解不等式(组)的实际背景,会用不等式表示不等关系;2. 了解实数运算的性质与大小顺序之间的关系,学会比较两实数的大小的方法;3掌握不等式的基本性质,并能运用这些性质解决有关问题.【要点梳理】要点一:符号法则与两实数大小的比较1. 实数的符号:任意,则(为正数)、或(为负数)三种情况有且只有一种成立.2. 两实数的加、乘运算结果的符号具有以下符号性质: 两个同号实数相加,和的符号不变符号语言:; 两个同号实数相乘,积是正数符号语言:; 两个异号实数相乘,积是负数。