高中数学双曲线

2.2.1双曲线及其标准方程第二章2.2双曲线学习目标1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程及其求法.3.会利用双曲线的定义和标准第2课时双曲线几何性质的应用第二章2.2.2双曲线的简单几何性质学习目标1.了解直线与双曲线的位置关系.2.了解与直线、双曲线有关的

高中数学双曲线Tag内容描述:

1、第一章 集合与函数概念1.3 函数的基本性质一、函数的单调性1函数单调性的定义一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1x2时,都有_,那么就说函数f(x)在区间D上是增函数;如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1x2时,都有_,那么就说函数f(x)在区间D上是减函数对函数单调性的理解(1)定义中的x1,x2有三个特征:任意性,即不能用特殊值代替;属于同一个区间;有大小,一般令x1x2学科网(2)增、减函数的定义实现自变量的大小关系与函数值的大小关系。

2、一、几类不同增长的函数模型1常见的函数模型(1)一次函数模型:(均为常数,),也称线性函数模型其增长特点是直线上升,增长速度_(2)二次函数模型:当研究的问题呈现先增长后减少的特点时,可以选用二次函数模型(均为常数,);当研究的问题呈现先减少后增长的特点时,可以选用二次函数模型(均为常数,)(3)指数函数模型:(均为常数,)其增长特点是随着自变量的增大,函数值增大的速度_,即增长速度急剧,形象地称为“指数爆炸”(4)对数函数模型:(为常数,)其增长特点是随着自变量的增大,函数值增大的速度_,即增长速度平。

3、第三章 概率3.3 几何概型1几何概型(1)几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)几何概型的特点试验中所有可能出现的结果(基本事件)有_多个.每个基本事件发生的可能性_.(3)古典概型与几何概型的异同点相同点:古典概型与几何概型中每一个基本事件发生的可能性都是相等的.不同点:古典概型要求随机试验的基本事件的总数必须是有限多个;几何概型要求随机试验的基本事件的个数是无限的,而且几何概型解决的问题一般都与几何知识有关.2。

4、第三章 不等式3.1 不等关系与不等式1不等关系不等关系主要有以下几种类型:(1)表示常量与常量之间的不等关系;(2)表示变量与常量之间的不等关系;(3)表示函数与函数之间的不等关系;(4)表示一组变量之间的不等关系2不等式的定义用不等号表示不等关系的式子叫_,如,等用“”或“”连接的不等式叫严格不等式,用“”或“”连接的不等式叫非严格不等式3不等式的分类按成立条件分绝对不等式无论用什么实数代替不等式中的字母都成立,如条件不等式只有用某些实数代替不等式中的字母才能成立,如矛盾不等式无论用什么实数代替不等式中。

5、第三章 概率3.1 随机事件的概率1简单随机抽样(1)随机事件一般地,我们把在条件S下,_的事件,叫做相对于条件S的必然事件,简称必然事件.在条件S下,_的事件,叫做相对于条件S的不可能事件,简称不可能事件._与_统称为相对于条件S的确定事件,简称确定事件.在条件S下_的事件,叫做相对于条件S的随机事件,简称随机事件.确定事件和随机事件统称为事件,一般用大写字母表示.(2)频率和概率对于随机事件,知道它发生的可能性大小是非常重要的.用概率度量随机事件发生的可能性大小能为我们的决策提供关键性的依据.要获得随机事件发生的概率,最直接的方。

6、1椭圆的定义平面内与两个定点F1,F2的距离的和等于_(大于|F1F2|)的点的轨迹叫做椭圆这两个定点叫做椭圆的焦点,两个焦点间的距离叫做椭圆的焦距椭圆的集合描述:设点M是椭圆上任意一点,点F1,F2是椭圆的焦点,则由椭圆的定义,椭圆就是集合PM|MF1|MF2|2a,0|F1F2|2a2椭圆的标准方程的推导过程如图,给定椭圆,它的焦点为F1,F2,焦距|F1F2|2c(c0),椭圆上任意一点到两焦点的距离之和等于2a(ac)(1)建系:以经过椭圆两焦点F1,F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy那么焦点F1,F2的坐标分别为_,_(2)列式:设M。

7、一、圆的标准方程1圆的标准方程基本要素当圆心的位置与半径的大小确定后,圆就唯一确定了,因此,确定一个圆的基本要素是_和_标准方程圆心为,半径为r的圆的标准方程是_图示说明若点在圆上,则点的_适合方程;反之,若点的坐标适合方程,则点M在_上2圆的标准方程的推导如图,设圆的圆心坐标为,半径长为r(其中a,b,r都是常数,r0).设为该圆上任意一点,那么圆心为C的圆就是集合.由两点间的距离公式,得圆上任意一点M的坐标(x,y)满足的关系式为 ,式两边平方,得.3点与圆的位置关系圆C:,其圆心为,半径为,点,设.位置关系与的大小图示点P。

8、一、函数的零点1函数零点的概念对于函数,我们把使_的实数叫做函数的零点易错提醒1函数的零点是实数,而不是点2并不是所有的函数都有零点3若函数有零点,则零点一定在函数的定义域内2函数零点与方程根的联系函数的零点就是方程的实数根,也就是函数的图象与轴的交点的_所以方程有实数根函数的图象与轴有交点函数有零点二、函数零点的判断如果函数在区间上的图象是_一条曲线,并且有_,那么,函数在区间内有零点,即存在,使得,这个也就是方程的根注意:由零点存在性定理只能判断出零点存在,不能确定零点的个数三、二分法的定义对于在区。

9、第三章 概率3.2古典概型1古典概型(1)基本事件在一次试验中,可能出现的每一个基本结果叫做基本事件基本事件有如下特点:学-科网任何两个基本事件是_的任何事件(除不可能事件)都可以表示成_(2)古典概型把具有特点:试验中所有可能出现的基本事件只有_个;每个基本事件出现的可能性_的概率模型称为古典概率模型,简称古典概型2古典概型的概率公式如果一次试验中,可能出现的结果有个,而且所有结果出现的可能性相等,那么每一个基本事件的概率都是;如果事件包含的基本事件有个,那么事件的概率为_=_3(整数值)随机数的产生(1)随机数。

10、一、空间直角坐标系定义以空间中两两_且相交于一点O的三条直线分别为x轴、y轴、z轴,这时就说建立了空间直角坐标系Oxyz,其中点O叫做坐标_,x轴、y轴、z轴叫做_通过每两个坐标轴的平面叫做_,分别称为xOy平面、yOz平面、_平面画法在平面上画空间直角坐标系Oxyz时,一般使xOy_,yOz90图示说明本书建立的坐标系都是右手直角坐标系,即在空间直角坐标系中,让右手拇指指向_轴的正方向,食指指向_轴的正方向,如果中指指向_轴的正方向,则称这个坐标系为右手直角坐标系二、空间直角坐标系中点的坐标1空间中的任意点与有序实数组之间的关系如图。

11、3.4 基本不等式1重要不等式:a2b22ab(a,bR)一般地,对于任意实数a,b,有a2b22ab,当且仅当_时,等号成立2基本不等式如果a0,b0,那么,当且仅当_时,等号成立其中,叫做正数a,b的算术平均数,叫做正数a,b的几何平均数因此基本不等式也可叙述为:两个正数的算术平均数不小于它们的几何平均数3基本不等式的证明(1)代数法:方法一 因为a0,b0,所以我们可以用,分别代替重要不等式中的a,b,得,当且仅当时,等号成立即( a0,b0),当且仅当ab时,等号成立方法二 因为,所以,即,所以方法三 要证,只要证,即证,即证,显然总是成立的。

12、2.4 正态分布1正态曲线我们把函数_,(其中是样本均值,是样本标准差)的图象称为正态分布密度曲线,简称正态曲线正态曲线呈钟形,即中间高,两边低2正态分布随机变量落在区间的概率为_,即由正态曲线,过点和点的两条轴的垂线,及轴所围成的平面图形的面积,如下图中阴影部分所示,就是落在区间的概率的近似值一般地,如果对于任何实数,随机变量满足,则称随机变量服从正态分布正态分布完全由参数,确定,因此正态分布常记作如果随机变量服从正态分布,则记为其中,参数是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;。

13、1双曲线的定义平面内与两个定点F1,F2的距离的差的绝对值等于_(小于|F1F2|且大于零)的点的轨迹叫做双曲线这两个定点叫做双曲线的焦点,两个焦点间的距离叫做双曲线的焦距双曲线的集合描述:设点M是双曲线上任意一点,点F1,F2是双曲线的焦点,则由双曲线的定义可知,双曲线就是集合PM|MF1|MF2|2a,02a|F1F2|2双曲线的标准方程双曲线的标准方程有两种形式:(1)焦点在x轴上的双曲线的标准方程为(a0,b0),焦点分别为F1(c,0),F2(c,0),焦距为2c,且_,如图1所示;(2)焦点在y轴上的双曲线的标准方程为(a0,b0),焦点分别为F1(0,c),F2。

14、1双曲线的定义平面内与两个定点F1,F2的距离的差的绝对值等于_(小于|F1F2|且大于零)的点的轨迹叫做双曲线这两个定点叫做双曲线的焦点,两个焦点间的距离叫做双曲线的焦距双曲线的集合描述:设点M是双曲线上任意一点,点F1,F2是双曲线的焦点,则由双曲线的定义可知,双曲线就是集合PM|MF1|MF2|2a,02a|F1F2|2双曲线的标准方程双曲线的标准方程有两种形式:(1)焦点在x轴上的双曲线的标准方程为(a0,b0),焦点分别为F1(c,0),F2(c,0),焦距为2c,且_,如图1所示;(2)焦点在y轴上的双曲线的标准方程为(a0,b0),焦点分别为F1(0,c),F2。

15、3.2 双曲线的简单性质,第二章 3 双曲线,学习目标 1.了解双曲线的简单性质(对称性、范围、顶点、实轴长和虚轴长等). 2.理解离心率的定义、取值范围和渐近线方程. 3.掌握标准方程中a,b,c,e 间的关系.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 双曲线的范围、对称性、顶点、渐近线,答案 范围、对称性、顶点、离心率、渐近线.,梳理,xa或xa,yR,ya或ya,xR,坐标轴,原点,A1(a,0),A2(a,0),A1(0,a),A2(0,a),知识点二 双曲线的离心率,双曲线的焦距与实轴长的比 ,叫作双曲线的离心率,记为e ,其取值范围是 .e越大,双曲线的。

16、3.1 双曲线及其标准方程,第二章 3 双曲线,学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程及其求法. 3.会利用双曲线的定义和标准方程解决简单的问题,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 双曲线的定义,思考 若取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,拉开或闭拢拉链,笔尖经过的点可画出一条曲线,那么曲线上的点应满足怎样的几何条件?,答案 如图,曲线上的点满足条件:|MF1|MF2|常数(小于|F1F2|);如果改变一下笔尖位。

17、第二章 2.3 双曲线,2.3.1 双曲线及其标准方程,学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程及其求法. 3.会利用双曲线的定义和标准方程解决简单的问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 双曲线的定义,思考,若取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,拉开或闭拢拉链,笔尖经过的点可画出一条曲线,那么曲线上的点应满足怎样的几何条件?,如图,曲线上的点满足条件:|MF1|MF2|常数; 如果改变一下笔尖位置,使|MF2|M。

18、第1课时 双曲线的简单几何性质,第二章 2.2.2 双曲线的简单几何性质,学习目标 1.了解双曲线的简单性质,如范围、对称性、顶点、渐近线和离心率等. 2.能用双曲线的简单性质解决一些简单问题. 3.能区别椭圆与双曲线的性质.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 双曲线的几何性质,xa或xa,ya或ya,坐标轴,原点,A1(a,0),A2(a,0),A1(0,a),A2(0,a),知识点二 等轴双曲线,思考 在双曲线标准方程中,若ab,其渐近线方程是什么?,答案 yx.,梳理 实轴和虚轴 的双曲线叫做 ,它的渐近线是 .,等长,等轴双曲线,yx,思考辨析 判断正误。

19、第2课时 双曲线几何性质的应用,第二章 2.2.2 双曲线的简单几何性质,学习目标 1.了解直线与双曲线的位置关系. 2.了解与直线、双曲线有关的弦长、中点等问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 直线与双曲线的位置关系,思考 直线与圆(椭圆)有且只有一个公共点,则直线与圆(椭圆)相切,那么,直线与双曲线相切,能用这个方法判断吗?,答案 不能.,梳理 设直线l:ykxm(m0), ,把代入得(b2a2k2)x22a2mkxa2m2a2b20.,(1)当b2a2k20,即k 时,直线l与双曲线C的渐近线 ,直线与双曲线 . (2)当b2a2k20,即k 时,(2a2mk)24(b2a2k。

20、2.2.1 双曲线及其标准方程,第二章 2.2 双曲线,学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程及其求法. 3.会利用双曲线的定义和标准方程解决简单的问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 双曲线的定义,思考 若取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,拉开或闭拢拉链,笔尖经过的点可画出一条曲线,那么曲线上的点应满足怎样的几何条件?,答案 如图,曲线上的点满足条件:|MF1|MF2|常数(小于|F1F2|);如果改变一下笔。

【高中数学双曲线】相关PPT文档
【高中数学双曲线】相关DOC文档
标签 > 高中数学双曲线[编号:16461]