考试内容考试内容 基本要求基本要求 略高要求略高要求 较高要求较高要求 二次二次函数函数 了解二次函数的意义;会利用描 点法画出二次函数的图像 能通过分析实际问题中的情境 确定二次函数的表达式;能从图 像上认识二次函数的性质;会根 据二次函数的解析式求其图象 与坐标轴的交点坐标,会确定图 像的顶点
二次函数应用培优Tag内容描述:
1、 考试内容考试内容 基本要求基本要求 略高要求略高要求 较高要求较高要求 二次二次函数函数 了解二次函数的意义;会利用描 点法画出二次函数的图像 能通过分析实际问题中的情境 确定二次函数的表达式;能从图 像上认识二次函数的性质;会根 据二次函数的解析式求其图象 与坐标轴的交点坐标,会确定图 像的顶点、对称轴和开口方向; 会利用二次函数的图像求出一 元二次方程的近似解 能用二次函数解决 简单的实际问题;能 解决二次函数与其 他知识结合的有关 问题 一、二次函数的定义 黑体小四 一般地,形如 2 yaxbxc(a b c ,为常数,0a 。
2、1 (2018 北京海 淀区第二学期练习)在平面直角坐标系 xOy 中,已知抛物线的顶点在 x 轴上, , ( )是此抛物线上的2yxab1(,)Pm2(,)Qx12x两点(1)若 ,当 时,求 , 的值;mb1x2将抛物线沿 轴平移,使得它与 轴的两个交点间的距离为 4,试描述出这一yx变化过程;(2)若存在实数 ,使得 ,且 成立,则 的取值范围是 c1xc27cm解: 抛物线 的顶点在 轴上,2yxab.4()0b. 2a1 分(1) , .b抛物线的解析式为 .21yx , ,解得 , . 1m10x22 分依题意,设平移后的抛物线为 .2()yk抛物线的对称轴是 ,平移后与 轴的两个交点之间的距离是 ,1xx4。
3、06 二次函数的简单应用高中必备知识点 1:平移变换问题 1 在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?我们不难发现:在对二次函数的图象进行平移时,具有这样的特点只改变函数图象的位置、不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置即可典型考题【典型例题】如图,抛物线 经过 两点,顶点为 D=2+3求 a 和 b 的值;(1)将抛物线沿 y 轴方向上下平移,使顶点 D 落在 x 轴上(2)求平移后所得图象的函数解析式;若将平移后的抛物线。
4、1.4二次函数的应用二次函数的应用 (第(第2课时)课时) 256yxx 2 58112xx 拟建中的一个温室的平面图如图拟建中的一个温室的平面图如图,如果温室外围是一如果温室外围是一 个矩形个矩形,周长为周长为120米米,室内通道的尺寸如图室内通道的尺寸如图,设一条边设一条边 长为长为x米米,种植面积为种植面积为y平方米平方米.试建立试建立y与与x的函数关系的函数关系 式式,并当并当x取何值时。
5、1.4二次函数的应用二次函数的应用 (第(第3课时)课时) 1.利用函数解决实际问题的基本利用函数解决实际问题的基本 思想方法思想方法?解题步骤解题步骤? 实际问题实际问题 抽象抽象 转化转化 数学问题数学问题 运用运用 数学知识数学知识 问题的解问题的解 返回解释返回解释 检验检验 创设情景创设情景,引入新课引入新课 2.二次函数应用二次函数应用的思路怎样的思路怎样? (1)理解问题理解问题。
6、1.4 二次函数的应用二次函数的应用 (第(第1 1课时)课时) 某商场销售一种名牌衬衫,平均每天售出某商场销售一种名牌衬衫,平均每天售出20件,每件盈利件,每件盈利 40元,为了扩大销售,增加盈利,尽量减少库存,商场决元,为了扩大销售,增加盈利,尽量减少库存,商场决 定采取适当的降价措施,经调查发现,如果每件衬衫每降定采取适当的降价措施,经调查发现,如果每件衬衫每降 价价1元,商场平均每天可多。
7、 考纲要求考纲要求: : 1. 会用描点法画出二次函数的图像,理解二次函数的性质。 2. 利用二次函数的性质解决简单的实际问题;能解决二次函数与其他知识结合的有关问题。 基础知识回顾基础知识回顾: : 一、一、 二二次函数的概念及解析式次函数的概念及解析式 1一般地,形如 yax 2 bxc(a,b,c 是常数,a0)的 2、2 函数,叫做二次函数 2、二次函数解析式的三种形式 (1)一般式:。
8、二次函数与图形综合知识互联网题型一:坐标系中(函数图象上)动点产生三角形问题思路导航坐标系中(函数图象上)动点产生三角形的问题我们主要讲解3类:因动点产生的等腰三角形问题因动点产生的直角三角形问题因动点产生的相似三角形问题.一、方法与技巧:已知线段和直线,在直线上找点,使为等腰三角形几何法:分别以点、为圆心,为半径作圆,找点,(检验)作线段的垂直平分线,找点(检验)代数法:设点的坐标为,求出、的长度,分类讨论:;求出点(检验)二、方法与技巧:已知线段和直线,在直线上找点,使为直角三角形几何法:分别。
9、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第08讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标熟练掌握二次函数的定义、图像与性质、三种表达式及最值等综合应用问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识概念(一) 二次函数的定义一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x的二次函数注意:1、二次项系数a0;yax2bxc(a,b,c是常数,a0)叫做二次函数的一般式;2、ax2bxc必须是整式;3、一次项、常数项也可以为零,一次项和常数。
10、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第08讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标熟练掌握二次函数的定义、图像与性质、三种表达式及最值等综合应用问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识概念(一) 二次函数的定义一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x的二次函数注意:1、二次项系数a0;yax2bxc(a,b,c是常数,a0)叫做二次函数的一般式;2、ax2bxc必须是整式;3、一次项、常数项也可以为零,一次项和常数。
11、中考一轮数学复习中考一轮数学复习 二次函数最值的综合应用二次函数最值的综合应用 培优提升专题训练培优提升专题训练 1当 m 在可取值范围内取不同的值时,代数式的最小值是( ) A0 B5 C3 D9 2二次函数 ymx24x+m 有最小值3,则 m 等于( ) A1 B4 C1 或4 D1 或 4 3若一次函数 y(a+1)x+a 的图象过第一、三、四象限,则二次函数 yax2ax( ) A有最大。
12、第第 8 8 讲讲 二次函数的区间最值及应用二次函数的区间最值及应用 模块模块一:二次函数的一:二次函数的区间最值区间最值 1定轴定区间 对于二次函数 2 (0)yaxbxc a在mxn 上的最值问题(其中a、b、c、m和n均为定值, max y 表示 y的最大值, min y 表示y的最小值) (1)若自变量x为全体实数,如图,函数在 2 b x a 时,取到最小值,无最大值 (2)若 2 b 。
13、课时训练课时训练( (十五十五) ) 二次函数的应用二次函数的应用 (限时:40 分钟) |夯实基础| 1.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图 K15-1 所示的平面直角坐标系,其函数解析式为 y=- 1 25x 2,当水 面离桥拱顶的高度 DO 是 4 m 时,水面的宽度 AB 为 ( ) 图 K15-1 A.-20 m B.10 m C.20 m D。
14、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第06讲-二次函数的应用 授课类型T同步课堂P实战演练S归纳总结教学目标 掌握二次函数最值的计算; 掌握几何图形面积的最值计算; 熟练运用二次函数解决最大利润问题; 理解二次函数与一元二次方程。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念1、用二次函数的性质解决最值计算问题(1)将函数表达式配方成顶点式,进行求解:开口向上时顶点处取得最小值;开口向下时取最大值。(2)当自变量X的取。
15、 例例4 4: : 一个球从地面上竖直向上弹起时的速度为一个球从地面上竖直向上弹起时的速度为10m/s,经,经 过过t(s)时球的高度为)时球的高度为h(m)。已知物体竖直上抛运动)。已知物体竖直上抛运动 中,中,h=v0t 0.5 gt (v0表示物体运动上弹开始时的速度,表示物体运动上弹开始时的速度, g表示重力系数,取表示重力系数,取g=10m/s )。问球从弹起至回到地)。问球从。
16、 例例1:用:用8 m长的铝合金型材做一个形状如图所示的长的铝合金型材做一个形状如图所示的 矩形窗框矩形窗框应做成长应做成长、宽各为多少时宽各为多少时,才能使做成的才能使做成的 窗框的透光面积最大窗框的透光面积最大?最大透光面积是最大透光面积是 多少多少? 解:设矩形窗框的面积为解:设矩形窗框的面积为y,由题意得由题意得, x x y 2 38 xx4 2 3 2 3 8 ) 3 4 。
17、小结:应用二次函数的性质解决日常生小结:应用二次函数的性质解决日常生 活中的最值问题,一般的步骤为:活中的最值问题,一般的步骤为: 把问题归结为二次函数问题(设自变量和函数);把问题归结为二次函数问题(设自变量和函数); 在自变量的取值范围内求出最值;(在自变量的取值范围内求出最值;(数形结合找最值数形结合找最值) 求出函数解析式(求出函数解析式(包括自变量的取值范围包括自变量的取值范围););。
18、22.3 实际问题与二次函数(2),学习目标:,1.能利用二次函数解决与利润有关的实际问题。2.通过对生活中实际问题的探究,体会数学建模思想。,若3x3,该函数的最大值、最小值分别为( )、( )。,又若0x3,该函数的最大值、最小值分别为( )、( )。,求函数的最值问题,应注意什么?,55 5,55 13,2、图中所示的二次函数图像的解析式为:,1、求下列二次函数的最大值或最小值: y=x22x3; y=x24x,某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为。
19、22.3实际问题与二次函数(1),几何图形最值问题,学习目标,学习重难点,会列出二次函数关系式,并解决几何图形的最大(小)值。,1、通过探究几何图形的长度和面积之间的关系,列出函数关系式;并确定自变量的取值范围。 2、会用二次函数顶点公式求实际问题中的极值。,二、新课引入,1.二次函数y=a(x-h)+k的图象是一 条 ,它的对称轴是 ,顶点坐标是 . 2.二次函数y=ax+bx+c的图象是一条 ,它的对称轴是 ,顶点坐标是 . 3.二次函数y=2(x-3)+5的对称轴是 ,顶点坐标是 . 4.二次函数y=x-4x+9的对称轴是 ,顶点坐标是 .,抛物线,X= h,(h,k),抛物线,X= 3。
20、二次函数的应用 聚焦考点温习理解1函数的应用主要涉及到经济决策、市场经济等方面的应用2利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案3利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题名师点睛典例分类考向一:利用二次函数最值及增减性解决实际问题典例 1:(2017达州)宏兴企业接到一批产。