第五章 三角形,第23讲 等腰三角形与直角三角形,1.如图,已知在ABC中,点D在BC上,ABADDC,B80,则C的度数为 ( ) A. 30 B. 40 C. 45 D. 60 2.一个等腰三角形的两边长分别是3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17 3.
第5单元三角形Tag内容描述:
1、第五章 三角形,第23讲 等腰三角形与直角三角形,1.如图,已知在ABC中,点D在BC上,ABADDC,B80,则C的度数为 ( ) A. 30 B. 40 C. 45 D. 60 2.一个等腰三角形的两边长分别是3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17 3.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是 ( ) A. 形状相同 B. 周长相等 C. 面积相等 D. 全等,B,A,C,4.(2017济宁市)如图,在RtABC中,ACB90,ACBC1,将RtABC绕点A逆时针旋转30后得到RtADE,点B经过的路径为 ,则图中阴影部分的面积是 ( ) A. B. C. 。
2、7.5 三角形内角和定理,第七章 平行线的证明,第2课时 三角形的外角,八年级数学北师版,学习目标,1.了解并掌握三角形的外角的定义(重点) 2.掌握三角形的外角的性质,利用外角的性质进行简单的证明和计算(难点),导入新课,复习引入,1.在ABC中,A=80, B=52,则C= .,3.什么是三角形的内角?其内角和等于多少?,48 ,三角形相邻两边组成的角叫作三角形的内角,,它们的和是180 .,2.如图,在ABC中, A=70, B=60,则ACB= ,ACD= .,50 ,130,B,D,C,A,O,40 ,70 ,?,问题:发现懒洋洋独自在O处游玩后,灰太狼打算用迂回的方式,先从A前进到C处,然后再折。
3、第五单元检测(2)1我会填。(1)电线杆上的三角形支架是运用了三角形具有()的特点而设计的。(2)一个三角形中,最少有()个锐角,最多有()个钝角。(3)一个等腰三角形的顶角是50,它的一个底角是();如果它的一个底角是50,它的顶角是()。(4)一个直角三角形中,其中一个锐角比另一个锐角大30,较小的锐角是()。(5)一个等边三角形,边长是12 cm,周长是()cm。(6)拼成一个等腰梯形至少需要()个相同的等边三角形。(7)任意一个四边形的内角和是()。(8)如果三角形的两条边分别长6 cm和9 cm,那么第三条边的长可能是()cm。(限整厘米数)2我会判。(对的在括号里。
4、第 2 课时 利用两边及一角的关系判定三角形相似关键问答如果已知两边成比例且夹角相等,那么这两个三角形相似吗?如果已知两边成比例且有一组对应角相等,那么这两个三角形相似吗?1 能判定ABCDEF 的条件是( )A. B. ,AFABDE ACDF ABDE ACDFC. ,BE D. ,ADABDE ACDF ABDE ACDF2如图 4411,在三角形纸片 ABC 中,AB9,AC 6,BC 12,沿虚线剪下的阴影部分的三角形与ABC 相似的是( )图 4411命题点 1 利用两边成比例且夹角相等证明两三角形相似 热度:93%32017景德镇模拟 如图 4412,在四边形 ABCD 中,如果ADCBAC,那么下列条件中不能判定AD。
5、第 7 课时 解直角三角形的实际应用1. (2018 长春) 如图,某地修建高速公路,要从 A 地向 B 地修一条隧道 (点 A、B 在同一水平面上)为了测量 A、B 两地之间的距离,一架直升飞机从 A 地出发,垂直上升 800 米到达 C 处,在 C 处观察 B 地的俯角为 ,则 A、B 两地之间的距离为( )A. 800sin 米 B.800tan 米C. 米 D. 米800sin 800tan第 1 题图2. (2018 河北) 如图,快艇从 P 处向正北航行到 A 处时,向左转 50航行到 B 处,再向右转80继续航行,此时的航行方向为( )A. 北偏东 30 B. 北偏东 80C. 北偏西 30 D.北偏西 50第 2 题图3. (2018 丽水)。
6、1第 18讲 相似三角形命题点 相似三角形的性质与判定1(2017河北 T73分)若ABC 的每条边长增加各自的 10%得ABC,则B的度数与其对应角B 的度数相比(D)A增加了 10% B减少了 10%C增加了(110%) D没有改变2(2011河北 T93分)如图,在ABC 中,C90,BC6,D,E 分别在 AB,AC 上,将ABC 沿 DE折叠,使点 A落在点 A处若 A为 CE的中点,则折痕 DE的长为(B)A.12B2C3D43(2014河北 T133分)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为 3,4,5 的三角形按图 1的方式向外扩张,得到新三角形,它们的对应边间距为 1,则新三角形与原三角形相似乙:。
7、,第3课时 全等三角形,考点突破,3,中考特训,4,广东中考,5,课前小测,C,第1题图,课前小测,A,2(2019安顺) 如图, 点B、F、C、E在一条直 线上,ABED,ACFD, 那么添加下列一个条件 第2题图 后,仍无法判定ABCDEF的是( ) AAD BACDF CABED DBFEC,课前小测,3如图,已知在四边形ABCD中,BCD90, BD平分ABC,AB6,BC9,CD4,则四边形 ABCD的面积是_,30,课前小测,4如图,D是AB上一点,DF交AC于点E,DE FE,FCAB,若AB4,CF3,则BD的长是 _ 第4题图,1,课前小测,5如图,12,34,求证:ACAD.,知识精点,知识点一:三角形全等的判定和性质,1全等图形:能够。
8、,第4课时 特殊三角形,考点突破,3,中考特训,4,广东中考,5,课前小测,D,1在ABC中,BC,AB5,则AC的长为( ) A2 B3 C4 D5 2等腰三角形的一个角是80,则它顶角的 度数是( ) A80 B80或20 C80或50 D20,B,课前小测,D,课前小测,2,4如图,在ABC中,ACB90,点D、E、F分别是AB、BC、CA的中点若CD2,则线段EF的长是_ 第4题图,课前小测,5如图,在RtABC中,BAC90,点D为BC边中点,且ABD为等边三角形,若AB2,求ABC的周长(结果保留根号) 第5题图,知识精点,知识点一:等腰三角形与等边三角形,知识精点,3,知识精点,知识点二:直角三角形,1直角三角形的性质与。
9、 尺规作三角形与三角形全等的应用 第14讲 适用学科 初中数学 适用年级 初中一年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1已知两边及其夹角求作三角形 2已知两角及其夹边求作三角形 3已知三边求作三角形 4尺规作三角形综合题 5利用三角形全等测距离 教学目标 1要掌握尺规作图的方法及一般步骤; 2通过画图,培养学生的作图能力及动手能力. 3会利用三角形全等测距。
10、 等腰三角形与直角三角形 第1讲 适用学科 初中数学 适用年级 初中二年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.等腰三角形判定与性质 2.直角三角形判定与性质 教学目标 1.理解等腰三角形的判定定理,并会运用其进行简单的证明 2.能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性 教学重点 特殊三角形的灵活应用 教学难点 特殊三角形的灵活应。
11、第2课时 三角形的面积,(一)出示情境:,情境导入,一、创设情境,引出问题,(二)提出问题:,过渡:这节课我们就来一起学习三角形的面积。,问题:回忆一下,我们是怎样推导出平行四边形面积的计算公式的?,预设:首先我们用割补法把平行四边形转化成了长方形;然后找到新旧图形之间整体和局部的联系;最后推导出平行四边形的面积公式。,怎样算出红领巾的面积呢?,能不能把三角形也转化成学过的,我们试一试。,推进新课,(一)借助拼摆,自主探究,1. 出示情境:老师为每个小组都准备了学具,请同学们先打开学具袋看看都有什么。(不同的小组。
12、第四章 三角形,第16讲 全等三角形,01,02,03,04,目录导航,课 前 预 习,C,B,B,4,考 点 梳 理,SAS,ASA,AAS,SSS,HL,课 堂 精 讲,D,ACBC(答案不唯一),61,15,往年 中 考,C,95,8,。
13、备战2021年中考数学考点一遍过(上海专用) 第七章 相似三角形(5)相似三角形的判定 知识梳理知识梳理 1三角形相似的传递性三角形相似的传递性:如果两个三角形分别与同一个三角形相似,那么这两个三角形也 相似 2相似三角形的预备定理相似三角形的预备定理:平行于三角形一边的直线截其他两边所在的直线,截得的三角 形与原三角形相似 【总结】【总结】 直线l截ABC两边AB、AC两边所在的直线,截得的三。
14、 1 第四章 三角形第三节 全等三角形基础过关1. (2018 贵州三州联考 )下列各图中 a、 b、 c 为三角形的边长,则甲、乙、丙三个三角形和左侧ABC 全等的是( )A. 甲和乙 B. 乙和丙 C. 甲和丙 D. 只有丙2. (2018 成都) 如图,已知ABC DCB,添加以下条件,不能判定 ABCDCB的是( )A. AD B. ACBDBC C. ACDB D. ABDC3. (2018 西安高新一中模拟)如图,已知 OAOB ,点 C 在 OA 上,点 D 在 OB 上,OCOD,AD 与 BC 相交于点 E,那么图中全等的三角形共有( )A. 2 对 。
15、第16课时 三角形与三角形全等(时间:45分钟)1(2018长沙中考)下列长度的三条线段,能组成三角形的是( B )A4 cm ,5 cm,9 cm B8 cm,8 cm,15 cmC5 cm, 5 cm,10 cm D 6 cm,7 cm,14 cm 来源 :Z,xx,k.Com2(2016贵港中考)在ABC中,若A95,B 40,则C的度数为( C )A35 B 40 C45 D503不一定在三角形内部的线段是( C )A三角形的角平分线 B三角形的中线C三角形的高 D三角形的中位线来源:学科网ZXXK4如图,在ABC中,已知A80,B 60,DEBC,那么CED的大小是( D )A40 B 60 C120 D140第4题图 第5题图5如图,点 E,F 。
16、,三角形,教学课件,湘教版八年级上册,01 新课导入,目录,03 典型例题,02 新知探究,04 拓展提高,05 课堂小结,06 作业布置,01 新课导入,新课导入,对于生活中的这些图形,同学们能找出其中三角形吗?又是怎样找出来的呢?下面我们就来学习有关三角形的数学知识。,02 新知探究,新知探究,三角形的概念,观察下面三角形的形成过程,说一说什么叫三角形?,定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.,A,B,C,三角形中有几条线段?有几个角?,有三条线段,三个角. 边:线段AB,BC,CA是三角形的边, 顶点:点A,B,C是三角形。
17、第16讲 三角形与全等三角形,三角形中的重要线段,1.直线、射线、线段的区别,中点,DC,垂线段,BC,90,2,BC,三角形的性质,1.三角形的分类,2.三边关系 三角形的任意两边之和 ,两边之差 . 3.三角形的内角和定理及推论 (1)三角形的内角和等于180,外角和等于360. (2)直角三角形的两个锐角 . (3)三角形的一个外角 与它不相邻的两个内角的和. (4)三角形的一个外角 与它不相邻的任何一个内角.,大于第三边,小于第三边,互余,等于,大于,全等三角形,1.性质 (1)全等三角形的 、 分别相等; (2)全等三角形的对应线段(角平分线、高、中线、中位线) ,周长 ,面积。
18、 等腰三角形与直角三角形 第1讲 适用学科 初中数学 适用年级 初中二年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.等腰三角形判定与性质 2.直角三角形判定与性质 教学目标 1.理解等腰三角形的判定定理,并会运用其进行简单的证明 2.能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性 教学重点 特殊三角形的灵活应用 教学难点 特殊三角形的灵活应。