章末总结 一、常见敏感元件的特点及应用 1.光敏电阻 光敏电阻在被光照射时电阻发生变化,光照增强,电阻减小;光照减弱,电阻增大。 2.热敏电阻和金属热电阻 金属热电阻的电阻率随温度升高而增大,热敏电阻有正温度系数热敏电阻、负温度系数热敏电阻两种,正温度系数的热敏电阻的阻值随温度升高而增大,负温度系数
第3章导数及其应用章末复习Tag内容描述:
1、章末总结 一、常见敏感元件的特点及应用 1.光敏电阻 光敏电阻在被光照射时电阻发生变化,光照增强,电阻减小;光照减弱,电阻增大。 2.热敏电阻和金属热电阻 金属热电阻的电阻率随温度升高而增大,热敏电阻有正温度系数热敏电阻、负温度系数热敏电阻两种,正温度系数的热敏电阻的阻值随温度升高而增大,负温度系数的热敏电阻的阻值随温度升高而减小。 例1 如图1所示是一火警报警器的部分电路示意图。其中R2为用半。
2、第3课时 导数与函数的综合问题基础达标1(2019台州市高考模拟)已知yf(x)为R上的连续可导函数,且xf(x)f(x)0,则函数g(x)xf(x)1(x0)的零点个数为()A0B1C0或1D无数个解析:选A.因为g(x)xf(x)1(x0),g(x)xf(x)f(x)0,所以g(x)在(0,)上单调递增,因为g(0)1,yf(x)为R上的连续可导函数,所以g(x)为(0,)上的连续可导函数,g(x)g(0)1,所以g(x)在(0,)上无零点2(2019丽水模拟)设函数f(x)ax33x1(xR),若对于任意x1,1,都有f(x)0成立,则实数a的值为_解析:(构造法)若x0,则不论a取何值,f(x)0显然成立;当x0时,即x(0,1时,f(x)ax33x10可化为a.。
3、第2课时导数与函数的极值、最值题型一用导数求解函数极值问题命题点1根据函数图象判断极值例1设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图象如图所示,则下列结论中一定成立的是()A函数f(x)有极大值f(2)和极小值f(1)B函数f(x)有极大值f(2)和极小值f(1)C函数f(x)有极大值f(2)和极小值f(2)D函数f(x)有极大值f(2)和极小值f(2)答案D解析由题图可知,当x0;当22时,f(x)0.由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值命题点2求已知函数的极值例2(2018通辽质检)已知函数f(x)x1(aR,e为自然对数的底数),求函数f(x)的。
4、第一课 导数及其应用核心速填1导数的概念(1)定义:函数 yf(x)在 xx 0 处的瞬时变化率 ,称为lim x 0fx0 x fx0x函数 yf( x)在 xx 0 处的导数(2)几何意义:函数 yf(x)在 xx 0 处的导数是函数图象在点(x 0,f( x0)处的切线斜率2几个常用函数的导数(1)若 yf(x) c ,则 f(x)0.(2)若 yf(x) x ,则 f(x)1.(3)若 yf(x) x 2,则 f( x)2x.(4)若 yf(x) ,则 f(x) .1x 1x2(5)若 yf(x) ,则 f(x ) .x12x3基本初等函数的导数公式(1)若 f(x)c(c 为常数),则 f(x)0.(2)若 f(x)x (Q *),则 f( x)x 1 .(3)若 f(x)sin x,则 f(x)cos _x.(4)若 f(x)cos x ,则 。
5、3.2导数的应用最新考纲考情考向分析1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)3.会利用导数解决某些实际问题(生活中的优化问题).考查函数的单调性、极值、最值,利用函数的性质求参数范围;与方程、不等式等知识相结合命题,强化函数与方程思想、转化与化归思想、分类讨论思想的应用意。
6、二、填空题:请将答案填在题中横线上13已知函数在上是减函数,则实数的取值范围是_14已知直线与曲线相切,则实数_15已知球的体积为,则球的内接圆锥的体积的最大值为_16若对于任意的正实数,恒成立,则实数的取值范围为_三、解答题:解答应写出文字说明、证明过程或演算步骤18已知函数,其中,且函数在处取得极值(1)求函数的解析式;(2)求曲线在点处的切线方程19已知函数,(1)若,求曲线在点处的切线方程;(2)讨论函数的单调性20已知函数,其中为自然对数的底数(1)试判断函数的单调性;(2)若对任意的,不等式恒成立,求实数的。
7、章末复习课,第一章 导数及其应用,学习目标 1.理解导数的几何意义并能解决有关斜率、切线方程等的问题. 2.掌握初等函数的求导公式,并能够综合运用法则求函数的导数. 3.掌握利用导数判断函数单调性的方法,会用导数求函数的极值和最值. 4.会用导数解决一些简单的实际应用问题. 5.掌握定积分的基本性质及应用.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 导数的概念,(2)几何意义:函数yf(x)在xx0处的导数是函数图象在点(x0,f(x0)处的切线的斜率,表示为 ,其切线方程为 .,f(x0),yf(x0)f(x0)(xx0),知识点二 基本初等函数的导数。
8、章末复习学习目标 1.理解导数的几何意义并能解决有关斜率、切线方程等的问题.2.掌握初等函数的求导公式,并能够综合运用求导法则求函数的导数.3.掌握利用导数判断函数单调性的方法,会用导数求函数的极值和最值.4.会用导数解决一些简单的实际应用问题1在 xx 0 处的导数(1)定义:函数 yf(x )在 xx 0 处的瞬时变化率是 ,我们称limx 0yx lim x 0 fx0 x fx0x它为函数 yf(x )在 xx 0 处的导数(2)几何意义:函数 yf(x )在 xx 0 处的导数是函数图象在点( x0,f (x0)处的切线斜率2基本初等函数的导数公式原函数 导函数yC(C 为常数) y0yx n ynx n1。
9、习题课导数的应用一、填空题1.函数yexln x的值域为_.考点利用导数研究函数的单调性、极值与最值题点利用导数研究函数的极值与最值答案2,)解析由ye(x0)知函数在上单调递减,在上单调递增,且函数连续、无上界,从而yexln x的值域为2,).2.函数y在定义域内的最大值、最小值分别是_.考点题点答案2,2解析函数的定义域为R.令y0,得x1.当x变化时,y,y随x的变化情况如下表:x(,1)1(1,1)1(1,)y00y极小值极大值当x趋近于负无穷大时,y趋近于0;当x趋近于正无穷大时,y趋近于0.由上表可知,当x1时,y取极小值也是最小值2;当x1时,y取极大值也。
10、习题课导数的应用一、选择题1函数yexln x的值域为()Ae,) B2,)C(e,) D(2,)答案B解析由ye(x0)知函数在上单调递减,在上单调递增,且函数连续、无上界,从而yexln x的值域为2,)2函数y在定义域内的最大值、最小值分别是()A2,2 B1,2 C2,1 D1,2答案A解析函数的定义域为R.令y0,得x1.当x变化时,y,y随x的变化情况如下表:x(,1)1(1,1)1(1,)y00y极小值极大值当x趋近于负无穷大时,y趋近于0;当x趋近于正无穷大时,y趋近于0.由上表可知,当x1时,y取极小值也是最小值2;当x1时,y取极大值也是最大值2.3设f(x)4x3mx2(m3)xn(m,nR)是R上的。
11、1巧用法则求导数导数的计算包括八个基本初等函数的导数公式,以及和、差、积、商的导数运算法则,它们是导数概念的深化,也是导数应用的基础,起到承上启下的作用那么在掌握和、差、积、商的导数运算法则时,要注意哪些问题?有哪些方法技巧可以应用?下面就以实例进行说明1函数和(或差)的求导法则(f(x)g(x)f(x)g(x)例1求下列函数的导数:(1)f(x)ln x;(2)yx32x3.解(1)f(x).(2)y(x3)(2x)33x22.点评记住基本初等函数的导数公式是正确求解导数的关键,此外函数和(或差)的求导法则可以推广到任意有限个可导函数和(或差)的求导2函数积的求导法。
12、章末检测试卷(三)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.曲线ysin x在点P处的切线斜率是_.考点导数的几何意义题点求某点处切线斜率答案解析由ysin x,得ycos x,所以在点P处的切线斜率是kcos .2.函数f(x)ln xx的单调递增区间为_.考点导数的运用题点求函数单调区间答案(0,1)解析令f(x)10,解不等式即可解得x1,注意定义域为(0,).所以0x1.3.设f(x)xln x,若f(x0)2,则x0_.考点导数的运用题点求函数导数答案e解析f(x)xln x,f(x)ln xxln x1,由f(x0)2,得ln x012,x0e.4.函数f(x)(x1)2(x2)2的极大值是_。
13、章末检测试卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1若小球自由落体的运动方程为S(t)gt2(g为常数),该小球在t1到t3的平均速度为,在t2时的瞬时速度为v2,则和v2关系为()A.v2 B.v2C.v2 D不能确定z答案C解析平均速度为2g.S(t)gt2,S(t)gt,t2时的瞬时速度为v2,v2S(2)g22g,v2,故选C.2当x在(,)上变化时,导函数f(x)的符号变化如下表:x(,1)1(1,4)4(4,)f(x)00则函数f(x)的图象的大致形状为()答案C解析从表中可知f(x)在(,1)上单调递减,在(1,4)上单调递增,在(4,)上单调递减3已知某物体运动的路。
14、习题课导数的应用学习目标1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用知识点一函数的单调性与其导数的关系定义在区间(a,b)内的函数yf(x)f(x)的正负f(x)的单调性f(x)0单调递增f(x)0,右侧f(x)0,那么f(x0)是极小值知识点三函数yf(x)在a,b上最大值与最小值的求法1求函数yf(x)在(a,b)内的极值2将函数yf(x)的极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值1函数yxln x在上是减函数()2若函数yaxln x在内单调递增,则a的取值范围为(2,。
15、第第 1 章章 导数及其应用导数及其应用 章末复习章末复习 学习目标 1.理解导数的几何意义并能解决有关斜率、切线方程等的问题.2.掌握初等函数 的求导公式, 并能够综合运用求导法则求函数的导数.3.掌握利用导数判断函数单调性的方法, 会用导数求函数的极值和最值.4.会用导数解决一些简单的实际应用问题 1导数的概念 (1)定义:设函数 yf(x)在区间(a,b)上有定义,x0(a,b),若 x 。
16、第一章 导数及其应用 章末复习 学习目标1.理解导数的几何意义,并能解决有关斜率、切线方程等问题.2.掌握初等函数的求导公式.3.熟练掌握利用导数判断函数单调性,会用导数求函数的极值与最值.4.掌握微积分基本定理,能利用定积分求不规则图形的面积 1函数yf(x)在点x0处的导数 (1)定义式:f(x0). (2)几何意义:曲线在点(x0,f(x0)处切线的斜率 2基本初等函数的导数公式 yf(x。
17、章末复习一、选择题1已知曲线yx22x2在点M处的切线与x轴平行,则点M的坐标是()A(1,2) B(1,3)C(1,3) D(1,2)答案B解析令f(x)2x20,解得x1.又f(1)(1)22(1)23,所以M(1,3)2设函数f(x)x32x5,若对任意的x1,2,都有f(x)a,则实数a的取值范围为()A. B(,2)C. D(,2答案A解析f(x)3x2x2,令f(x)0,得3x2x20,解得x1或x,又f(1),f,f(1),f(2)7,故f(x)min,a.3已知yf(x)是奇函数,当x(0,2)时,f(x)ln xax,当x(2,0)时,f(x)的最小值为1,则a的值为()A1 B2 C. D3答案A解析由题意知,当x(0,2)时,f(x)的最大值为1.令f。
18、章末复习学习目标1.理解导数的几何意义并能解决有关斜率、切线方程等的问题.2.掌握初等函数的求导公式,并能够综合运用求导法则求函数的导数.3.掌握利用导数判断函数单调性的方法,会用导数求函数的极值和最值.4.会用导数解决一些简单的实际应用问题1在xx0处的导数(1)定义:函数yf(x)在xx0处的瞬时变化率,若x无限趋近于0时,比值无限趋近于一个常数A,称函数yf(x)在xx0处可导常数A为f(x)在xx0处的导数(2)几何意义:函数yf(x)在xx0处的导数是函数图象在点(x0,f(x0)处的切线斜率(3)物理意义:瞬时速度、瞬时加速度2基本初等函数的求导公式。