2019年人教B版数学选修2-1学案第1章 阶段复习课

第 2 课时 利用导数研究函数的最值学习目标 1.理解函数最值的概念,了解其与函数极值的区别与联系.2.会求某闭区间上函数的最值知识点 函数的最值如图为 yf(x) ,x a,b的图象思考 1 观察a,b上函数 y f(x)的图象,试找出它的极大值、极小值答案 极大值为 f(x1),f(x 3),极

2019年人教B版数学选修2-1学案第1章 阶段复习课Tag内容描述:

1、第 2 课时 利用导数研究函数的最值学习目标 1.理解函数最值的概念,了解其与函数极值的区别与联系.2.会求某闭区间上函数的最值知识点 函数的最值如图为 yf(x) ,x a,b的图象思考 1 观察a,b上函数 y f(x)的图象,试找出它的极大值、极小值答案 极大值为 f(x1),f(x 3),极小值为 f(x2),f(x 4)思考 2 结合图象判断,函数 yf (x)在区间a,b 上是否存在最大值,最小值?若存在,分别为多少?答案 存在,f(x )minf(a),f(x) maxf(x 3)梳理 (1)函数 f(x)在闭区间 a,b上的最值函数 f(x)在闭区间a,b上的图象是一条连续不断的曲线,则该函数在。

2、第 2 课时 抛物线的几何性质的应用学习目标 1.掌握抛物线的几何特性.2.学会解决直线与抛物线相关的综合问题知识点 直线与抛物线的位置关系思考 1 直线与抛物线有哪几种位置关系?答案 三种:相离、相切、相交思考 2 若直线与抛物线只有一个交点,直线与抛物线一定相切吗?答案 不一定,当平行或重合于抛物线的对称轴的直线与抛物线相交时,也只有一个交点梳理 (1)直线与抛物线的位置关系与公共点个数.位置关系 公共点个数相交 有两个或一个公共点相切 有且只有一个公共点相离 无公共点(2)直线 ykxb 与抛物线 y22px(p0)的交点个数决定于关。

3、第 2 课时 椭圆的几何性质的应用学习目标 1.进一步巩固椭圆的几何性质.2.掌握直线与椭圆位置关系等相关知识知识点一 点与椭圆的位置关系思考 类比点与圆的位置关系的判定,你能给出点 P(x0, y0)与椭圆 1(ab0)的位置x2a2 y2b2关系的判定吗?答案 当 P 在椭圆外时, 1;x20a2 y20b2当 P 在椭圆上时, 1;x20a2 y20b2当 P 在椭圆内时, b0),则点 P 与椭圆的位置关系如下表所示:x2a2 y2b2位置关系 满足条件P 在椭圆外 1x20a2 y20b2P 在椭圆上 1x20a2 y20b2P 在椭圆内 0相切 一解 0相离 无解 0直线与椭圆相交有两个公共点(2)0 直线与椭圆相。

4、第一课 导数及其应用核心速填1导数的概念(1)定义:函数 yf(x)在 xx 0 处的瞬时变化率 ,称为lim x 0fx0 x fx0x函数 yf( x)在 xx 0 处的导数(2)几何意义:函数 yf(x)在 xx 0 处的导数是函数图象在点(x 0,f( x0)处的切线斜率2几个常用函数的导数(1)若 yf(x) c ,则 f(x)0.(2)若 yf(x) x ,则 f(x)1.(3)若 yf(x) x 2,则 f( x)2x.(4)若 yf(x) ,则 f(x) .1x 1x2(5)若 yf(x) ,则 f(x ) .x12x3基本初等函数的导数公式(1)若 f(x)c(c 为常数),则 f(x)0.(2)若 f(x)x (Q *),则 f( x)x 1 .(3)若 f(x)sin x,则 f(x)cos _x.(4)若 f(x)cos x ,则 。

5、第一课 常用逻辑用语核心速填1命题及其关系(1)判断一个语句是否为命题,关键是:为陈述句;能判断真假(2)互为逆否关系的两个命题的真假性相同(3)四种命题之间的关系如图所示2充分条件、必要条件和充要条件(1)定义一般地,若 p 则 q 为真命题,是指由 p 通过推理可以得出 q.这时,我们就说,由 p 可推出 q,记作 pq,并且说 p 是 q 的充分条件,q 是 p 的必要条件一般地,如果既有 pq,又有 qp,就记作 pq.此时,我们说,p 是 q 的充分必要条件,简称充要条件(2)特征充分条件与必要条件具有以下两个特征:对称性:若 p 是 q 的充分条件,则。

标签 > 2019年人教B版数学选修2-1学案第1章 阶段复习课[编号:101214]