抛物线的几何性质

第 3 课时 拱桥问题和运动中的抛物线1掌握二次函数模型的建立,会把实际问题转化为二次函数问题2利用二次函数解决拱桥及运动中的有关问题3能运用二次函数的图象与性质进行决策一、情境导入某大学的校门是一抛物线形的水泥建筑物(如图所示),大门的宽度为 8 米,两侧距地面 4 米高处各挂有一个挂校名横匾用的

抛物线的几何性质Tag内容描述:

1、第 3 课时 拱桥问题和运动中的抛物线1掌握二次函数模型的建立,会把实际问题转化为二次函数问题2利用二次函数解决拱桥及运动中的有关问题3能运用二次函数的图象与性质进行决策一、情境导入某大学的校门是一抛物线形的水泥建筑物(如图所示),大门的宽度为 8 米,两侧距地面 4 米高处各挂有一个挂校名横匾用的铁环,两铁环的水平距离为 6 米,请你确定校门的高度是多少?二、合作探究探究点一:建立二次函数模型【类型一】运动轨迹问题某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时离地面高 米,与篮圈中心的水平距。

2、第二课时第二课时 抛物线的方程及性质的应用抛物线的方程及性质的应用 课标要求 素养要求 1.了解抛物线的简单应用. 2.运用抛物线的方程及简单几何性质, 解决与抛物线有关的问题. 通过本节课进一步提升逻辑推理及数学 运算素养. 自主梳理 1。

3、2.4抛物线2.4.1抛物线的标准方程学习目标1.掌握抛物线的定义及焦点、准线的概念.2.掌握抛物线的标准方程及其推导过程.3.明确抛物线标准方程中p的几何意义,能解决简单的求抛物线标准方程的问题知识点抛物线的标准方程思考1在抛物线方程中p有何意义?抛物线的开口方向由什么决定?答案p是抛物线的焦点到准线的距离,抛物线方程中一次项决定开口方向思考2已知抛物线的标准方程,怎样确定抛物线的焦点位置和开口方向?答案一次项变量为x(或y),则焦点在x轴(或y轴)上若系数为正,则焦点在正半轴上;若系数为负,则焦点在负半轴上焦点确定,开。

4、第1课时 抛物线的几何性质,第二章 2.3.2 抛物线的几何性质,学习目标 1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质. 2.会利用抛物线的性质解决一些简单的抛物线问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 抛物线的几何性质,思考1 类比椭圆、双曲线的几何性质,你认为可以讨论抛物线的哪些几何性质?,答案 范围、对称性、顶点、离心率.,思考2 类比椭圆、双曲线的几何性质,结合图象,你能说出抛物线y22px(p0)的范围、对称性、顶点坐标吗?,答案 范围x0,关于x轴对称,顶点坐标(0,0).,梳理 抛物线的几何性质,。

5、第2课时 抛物线的几何性质的应用,第二章 2.3.2 抛物线的几何性质,学习目标 1.掌握抛物线的几何特性. 2.学会解决直线与抛物线相关的综合问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 直线与抛物线的位置关系,思考1 直线与抛物线有哪几种位置关系?,答案 三种:相离、相切、相交.,思考2 若直线与抛物线只有一个交点,直线与抛物线一定相切吗?,答案 不一定,当平行或重合于抛物线的对称轴的直线与抛物线相交时,也只有一个交点.,梳理 (1)直线与抛物线的位置关系与公共点个数.,有两个或一个,有且只有一个,无,(2)直线ykxb与抛。

6、第2课时 抛物线几何性质的应用,第二章 2.3.2 抛物线的简单几何性质,学习目标 1.进一步加深对抛物线几何特性的认识. 2.掌握解决直线与抛物线相关综合问题的基本方法.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 直线与抛物线的位置关系,思考 直线与抛物线有且只有一个公共点,那么直线与抛物线一定相切吗?,答案 不一定,当直线平行于抛物线的对称轴时,直线与抛物线相交.,梳理 (1)直线与抛物线的位置关系有 、 、 ,直线与抛物线的公共点个数与由它们的方程组成的方程组的解的个数一致. (2)由方程ykxb与y22px联立,消去y得k2x2。

7、第1课时 抛物线的简单几何性质,第二章 2.3.2 抛物线的简单几何性质,学习目标 1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质. 2.会利用抛物线的性质解决一些简单的抛物线问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 抛物线的几何性质,思考 观察下列图形,思考以下问题:,观察焦点在x轴的抛物线与双曲线及椭圆的图形,分析其几何图形存在哪些区别?,答案 抛物线与另两种曲线相比较,有明显的不同,椭圆是封闭曲线,有四个顶点,有两个焦点,有中心;双曲线虽然不是封闭曲线,但是有两支,有两个顶点,两个焦点。

8、2.3.2 抛物线的几何性质第 1 课时 抛物线的几何性质学习目标 1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.2.会利用抛物线的性质解决一些简单的抛物线问题知识点一 抛物线的几何性质思考 1 类比椭圆、双曲线的几何性质,你认为可以讨论抛物线的哪些几何性质?答案 范围、对称性、顶点、离心率思考 2 类比椭圆、双曲线的几何性质,结合图象,你能说出抛物线 y22px( p0)的范围、对称性、顶点坐标吗?答案 范围 x0,关于 x 轴对称,顶点坐标(0,0)梳理 抛物线的几何性质标准方程 y22px(p0) y22px(p0) x22py(p0) x22py( p0)图形范。

9、课时跟踪训练(十三) 抛物线的几何性质1抛物线 y28x 的焦点到准线的距离是_2抛物线 y22x 上的两点 A,B 到焦点的距离之和是 5,则线段 AB 的中点到 y 轴的距离是_3过点(0,1)且与抛物线 y24x 只有一个公共点的直线有_条4已知直线 l 过抛物线 C 的焦点,且与 C 的对称轴垂直,l 与 C 交于 A,B 两点,|AB|12 ,P 为 C 的准线上一点,则ABP 的面积为_5已知点 A(2,0),抛物线 C:x 24y 的焦点为 F,射线 FA 与抛物线 C 相交于点 M,与其准线相交于点 N,则 FMMN_.6已知抛物线的顶点在原点,焦点在 x 轴的正半轴上,抛物线上的点 M(3,m)到焦点。

10、第 2 课时 抛物线的几何性质的应用学习目标 1.掌握抛物线的几何特性.2.学会解决直线与抛物线相关的综合问题知识点 直线与抛物线的位置关系思考 1 直线与抛物线有哪几种位置关系?答案 三种:相离、相切、相交思考 2 若直线与抛物线只有一个交点,直线与抛物线一定相切吗?答案 不一定,当平行或重合于抛物线的对称轴的直线与抛物线相交时,也只有一个交点梳理 (1)直线与抛物线的位置关系与公共点个数.位置关系 公共点个数相交 有两个或一个公共点相切 有且只有一个公共点相离 无公共点(2)直线 ykxb 与抛物线 y22px(p0)的交点个数决定于关。

11、第二章 2.4 抛物线,2.4.2 抛物线的简单几何性质,学习目标 1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质. 2.会利用抛物线的性质解决一些简单的抛物线问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 抛物线的范围,思考,观察右侧图形,思考以 下问题: (1)观察焦点在x轴的抛物 线与双曲线及椭圆的图形,分析其几何图形存在哪些区别?,抛物线与另两种曲线相比较,有明显的不同,椭圆是封闭曲线,有四个顶点,有两个焦点,有中心;双曲线虽然不是封闭曲线,但是有两支,有两个顶点,两个焦点,有中心;抛物线只有一。

12、24.2 抛物线的几何性质对 应 学 生 用 书 P33太阳能是最清洁的能源,太阳能灶是日常生活中应用太阳能的典型例子太阳能灶接受面是抛物线的一部分绕其对称轴旋转一周形成的曲面它的原理是太阳光线(平行光束 )射到抛物镜面上,经镜面反射后,反射光线都经过抛物线的焦点,这就是太阳能灶把光能转化为热能的理论依据问题 1:抛物线有几个焦点?提示:一个问题 2:抛物线有点像双曲线的一支,抛物线有渐近线吗?提示:没有问题 3:抛物线的顶点与椭圆、双曲线有什么不同? 提示:椭圆有四个顶点,双曲线有二个顶点,抛物线只有一个顶点抛物线的。

13、242 抛物线的简单几何性质1了解抛物线的范围、对称性、顶点、焦点、准线等几何性质 2会利用抛物线的性质解决一些简单的抛物线问题抛物线的简单几何性质标准方程 y22px(p0) y22px( p 0) x22py(p0) x22py( p 0)图形范围 x0,yR x0,yR y0,xR y0,xR焦点 (p2,0) ( p2,0) (0,p2) (0, p2)准线方程xp2xp2yp2yp2对称轴 x 轴 y 轴顶点 (0,0)离心率 e1抛物线与椭圆、双曲线几何性质的差异(1)它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;(2)顶点个数不同,椭圆有 4 个顶点,双曲线有 2 个顶点,抛物线只有 1 个顶点;(3)焦点个数不。

14、2.4.2 抛物线的几何性质(二)学习目标:1.掌握直线与抛物线位置关系的判断.2.掌握直线与抛物线相交时与弦长相关的知识.3.掌握直线与抛物线相关的求值、证明问题自 主 预 习探 新 知1直线与抛物线的位置关系及判定位置关系 公共点 判定方法相交 有两个或一个公共点 k 0 或Error!相切 有且只有一个公共点 0相离 无公共点 0联立直线与抛物线方程,得到一个一元二次方程,记判别式为基础自测1思考辨析(1)经过抛物线上一点有且只有一条直线与抛物线有一个公共点( )(2)过抛物线内一点只有一条直线与抛物线有且只有一个公共点( )(3)过点(0,1)作直。

15、2.4.2 抛物线的几何性质( 一)学习目标:1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质( 重点 )2.会利用抛物线的性质解决一些简单的抛物线问题(重点、难点)自 主 预 习探 新 知1抛物线的几何性质标准方程y22px(p0)y22px(p0)x22py(p0)x22py(p0)图形范围 x 0,yR x 0,yR xR,y0xR,y0对称轴x 轴 y 轴顶点 (0,0)性质离心率e1思考:参数 p 对抛物线开口大小有何影响?提示 参数 p(p0)对抛物线开口大小有影响,因为过抛物线的焦点 F 且垂直于对称轴的弦的长度是 2p,所以 p 越大,开口越大2焦点弦设过抛物线焦点的弦的端点为 A(x1,。

16、23.2 抛物线的简单几何性质第一课时 抛物线的简单几何性质读教材填要点抛物线的几何性质类型 y22px( p0) y22px( p0) x22py( p0) x22py (p0)图象焦点F(p2,0)F( p2,0)F(0,p2)F(0, p2)准线xp2xp2yp2yp2范围 x0, yR x0 ,yR xR,y0 xR,y0对称轴 x 轴 y 轴顶点 O(0,0)离心率 e1性质开口方向 向右 向左 向上 向下小问题大思维1抛物线 y22px (p0)有几条对称轴?是否是中心对称图形?提示:有一条对称轴,即 x 轴,不是中心对称图形2抛物线上一点与焦点 F 的连线的线段叫作焦半径,过焦点的直线与抛物线相交所得弦叫作焦点弦,若 P(x0,y 0)。

17、3.3.2 抛物线的简单几何性质抛物线的简单几何性质 第一课时第一课时 抛物线的简单几何性质抛物线的简单几何性质 课标要求 素养要求 1.了解抛物线的简单几何性质. 2.会利用抛物线的性质解决一些简单的 抛物线问题. 通过研究抛物线的几何性。

18、2.2 抛物线的简单性质,第三章 2 抛物线,学习目标,XUEXIMUBIAO,1.了解抛物线的范围、对称性、顶点、焦点、准线等性质. 2.会利用抛物线的性质解决一些简单的抛物线问题.,NEIRONGSUOYIN,内容索引,自主学习,题型探究,达标检测,1,自主学习,PART ONE,知识点一 抛物线的简单性质,知识点二 直线与抛物线的位置关系,当k0时,若0,则直线与抛物线有 个不同的公共点;若0,直线与抛物线有 个公共点;若0,直线与抛物线 公共点. 当k0时,直线与抛物线的轴 ,此时直线与抛物线有 个公共点.,两,一,没有,平行或重合,1,1.抛物线关于顶点对称.( ) 2.抛物线。

19、2.4.2抛物线的几何性质一、选择题1设抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离的取值范围是()A(6,) B6,)C(3,) D3,)答案D解析抛物线的焦点到顶点的距离为3,3,即p6.又抛物线上的点到准线距离的最小值为,抛物线上的点到准线距离的取值范围是3,)2若抛物线y24x上一点P到x轴的距离为2,则点P到抛物线的焦点F的距离为()A4 B5 C6 D7答案A解析由题意,知抛物线y24x的准线方程为x1,抛物线y24x上一点P到x轴的距离为2,则P(3,2),点P到抛物线的准线的距离为314,点P到抛物线的焦点F的距离为4.故选A.3P为抛物线y22px的焦点弦。

20、2.4.2抛物线的几何性质学习目标1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.2.会利用抛物线的性质解决一些简单的抛物线问题知识点一抛物线的几何性质思考1类比椭圆、双曲线的几何性质,结合图象,你能说出抛物线y22px(p0)的范围、对称性、顶点坐标吗?答案范围x0,关于x轴对称,顶点坐标(0,0)思考2抛物线标准方程y22px(p0)中的参数p对抛物线开口大小有何影响?答案p越大,开口越大梳理标准方程y22px(p0)y22px(p0)x22py(p0)x22py(p0)图形性质范围x0,yRx0,yRxR,y0xR,y0对称轴x轴y轴顶点(0,0)离心率e1知识点二焦点弦设过抛。

【抛物线的几何性质】相关PPT文档
【抛物线的几何性质】相关DOC文档
《22.3.3拱桥问题和运动中的抛物线》教案
2.4.1抛物线的标准方程 学案(含答案)
2.4.2抛物线的几何性质 学案(含答案)
标签 > 抛物线的几何性质[编号:185472]