章末复习课,第一章 导数及其应用,学习目标 1.理解导数的几何意义并能解决有关斜率、切线方程等的问题. 2.掌握初等函数的求导公式,并能够综合运用法则求函数的导数. 3.掌握利用导数判断函数单调性的方法,会用导数求函数的极值和最值. 4.会用导数解决一些简单的实际应用问题. 5.掌握定积分的基本性质
人教A版高中数学选修1-2第一章统计案例章末复习课课件Tag内容描述:
1、章末复习课,第一章 导数及其应用,学习目标 1.理解导数的几何意义并能解决有关斜率、切线方程等的问题. 2.掌握初等函数的求导公式,并能够综合运用法则求函数的导数. 3.掌握利用导数判断函数单调性的方法,会用导数求函数的极值和最值. 4.会用导数解决一些简单的实际应用问题. 5.掌握定积分的基本性质及应用.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 导数的概念,(2)几何意义:函数yf(x)在xx0处的导数是函数图象在点(x0,f(x0)处的切线的斜率,表示为 ,其切线方程为 .,f(x0),yf(x0)f(x0)(xx0),知识点二 基本初等函数的导数。
2、章末复习课,第一章 计数原理,学习目标 1.理解分类加法计数原理和分步乘法计数原理,能结合具体问题的特征,合理选择两个计数原理来分析和解决一些简单的实际问题. 2.理解排列、组合的概念,能利用计数原理推导排列数和组合数公式,掌握组合数的两个性质,并能用它们解决实际问题. 3.能利用计数原理证明二项式定理,掌握二项式定理和二项展开式的性质,并能应用它们解决与二项展开式有关的计算和证明问题.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.分类加法计数原理 完成一件事有n类不同的方案,在第1类方案中有m1种不同的方法,在。
3、章末检测(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1下列语句表示的事件中的因素不具有相关关系的是()A瑞雪兆丰年B名师出高徒C吸烟有害健康D喜鹊叫喜,乌鸦叫丧2根据一位母亲记录儿子39岁的身高数据,建立儿子身高(单位:cm)对年龄(单位:岁)的线性回归方程y7.19x73.93,用此方程预测儿子10岁的身高,有关叙述正确的是()A身高一定为145.83 cmB身高大于145.83 cmC身高小于145.83 cmD身高在145.83 cm左右3下列结论正确的是()函数关系是一种确定性关系;相关关系是一种非确定性关系;回归关系是对具有函。
4、第一章测评(时间 120 分钟,满分 150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1.已知下面的 22 列联表:y1 y2 总计x1 a b 73x2 22 c 47总计 74 46 120则 a+b+c 等于( )A.96 B.97C.98 D.99解析: 根据表中的数据,可得 a+b+c+22=120,所以 a+b+c=120-22=98.答案: C2.在线性回归模型 y=bx+a+ 中,下列说法正确的是( )A.y=bx+a+ 是一次函数B.因变量 y 是由自变量 x 唯一确定的C.因变量 y 除了受自变量 x 的影响外,可能还受到其他因素的影响,这些因素会导致随机误差 的产生D.随机误差 是由于计算不准确造成的,可以通过精确计算避免随。
5、章末复习课,第一章 统计案例,学习目标 1.会求线性回归方程,并用回归直线进行预报. 2.理解独立性检验的基本思想及实施步骤.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.最小二乘法 对于一组数据(xi,yi),i1,2,n,如果它们线性相关,则线性回归方程为 其中 , .,2.22列联表 22列联表如表所示:,ab,cd,ac,bd,其中n 为样本容量.,abcd,3.独立性检验 常用随机变量,K2 来检验两个变量是否有关系.,题型探究,例1 某城市理论预测2010年到2014年人口总数与年份的关系如表所示:,解答,类型一 线性回归分析,(1)请画出上表数据的散点图;,解 散。