人教A版高中数学选修1-2《第一章统计案例》章末复习课课件

上传人:可** 文档编号:55495 上传时间:2019-04-06 格式:PPTX 页数:35 大小:1.21MB
下载 相关 举报
人教A版高中数学选修1-2《第一章统计案例》章末复习课课件_第1页
第1页 / 共35页
人教A版高中数学选修1-2《第一章统计案例》章末复习课课件_第2页
第2页 / 共35页
人教A版高中数学选修1-2《第一章统计案例》章末复习课课件_第3页
第3页 / 共35页
人教A版高中数学选修1-2《第一章统计案例》章末复习课课件_第4页
第4页 / 共35页
人教A版高中数学选修1-2《第一章统计案例》章末复习课课件_第5页
第5页 / 共35页
点击查看更多>>
资源描述

1、章末复习课,第一章 统计案例,学习目标 1.会求线性回归方程,并用回归直线进行预报. 2.理解独立性检验的基本思想及实施步骤.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.最小二乘法 对于一组数据(xi,yi),i1,2,n,如果它们线性相关,则线性回归方程为 其中 , .,2.22列联表 22列联表如表所示:,ab,cd,ac,bd,其中n 为样本容量.,abcd,3.独立性检验 常用随机变量,K2 来检验两个变量是否有关系.,题型探究,例1 某城市理论预测2010年到2014年人口总数与年份的关系如表所示:,解答,类型一 线性回归分析,(1)请画出上表数据的散点图;,解 散点图如

2、图:,051728311419132, 021222324230,,解答,(3)据此估计2018年该城市人口总数.,故估计2018年该城市人口总数为29.2(十万).,解答,解决回归分析问题的一般步骤 (1)画散点图.根据已知数据画出散点图. (2)判断变量的相关性并求回归方程.通过观察散点图,直观感知两个变量是否具有相关关系;在此基础上,利用最小二乘法求回归系数,然后写出回归方程. (3)回归分析.画残差图或计算R2,进行残差分析. (4)实际应用.依据求得的回归方程解决实际问题.,反思与感悟,跟踪训练1 在一段时间内,某种商品的价格x元和需求量y件之间的一组数据为:,解答,且知x与y具有线

3、性相关关系,求出y关于x的线性回归方程,并说明拟合效果的好坏.,所以R20.994,拟合效果较好.,已知在全班48人中随机抽取1人,抽到喜爱打篮球的学生的概率为 2 3 .,例2 为了解某班学生喜爱打篮球是否与性别有关,对本班48人进行了问卷调查得到了如下的22列联表:,类型二 独立性检验,(1)请将上面的22列联表补充完整;(不用写计算过程),解 列联表补充如下:,解答,(2)能否在犯错误的概率不超过0.05的前提下认为喜爱打篮球与性别有关?说明你的理由.,因为4.2863.841,所以能在犯错误的概率不超过0.05的前提下认为喜爱打篮球与性别有关.,解答,独立性检验问题的求解策略 (1)等

4、高条形图法:依据题目信息画出等高条形图,依据频率差异来粗略地判断两个变量的相关性. (2)K2统计量法:通过公式,反思与感悟,先计算观测值k,再与临界值表作比较,最后得出结论.,跟踪训练2 某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数,如图所示.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).,(1)根据茎叶图,帮助这位同学说明其亲属30人的饮食习惯;,解 30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉类为主.,解答,(2)根据以上数据完成如表所示的22列联表;,解答,解 22列联表如表所示:,(3)在

5、犯错误的概率不超过0.01的前提下,是否能认为“其亲属的饮食习惯与年龄有关”?,故在犯错误的概率不超过0.01的前提下认为“其亲属的饮食习惯与年龄有关”.,解答,当堂训练,1.“回归”一词是在研究子女的身高与父母的身高之间的遗传关系时由高尔顿提出的,他的研究结果是子代的平均身高向中心回归.根据他的结论,在儿子的身高y与父亲的身高x的线性回归方程 A.在(1,0)内 B.等于0 C.在(0,1)内 D.在1,)内,答案,2,3,4,5,1,解析 子代平均身高向中心回归, 应为正的真分数,故选C.,解析,2.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查

6、,得到以下数据:,2,3,4,5,1,2,3,4,5,1,由以上数据,计算得到K2的观测值k9.643,根据临界值表,以下说法正确的是 A.没有充足的理由认为课外阅读量大与作文成绩优秀有关 B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关 C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关 D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关,答案,解析 根据临界值表,9.6437.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.,解析,解析 中,回归方程中x的系数为正,不是负相关; 回

7、归方程中,x的系数为负,不是正相关,所以一定不正确.,3.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归方程,分别得到以下四个结论: y与x负相关且 2.347x6.423; y与x负相关且 3.476x5.648; y与x正相关且 5.437x8.493; y与x正相关且 4.326x4.578. 其中一定不正确的结论的序号是 A. B. C. D.,2,3,4,5,1,答案,解析,4.考察棉花种子经过处理与得病之间的关系,得到下表中的数据:,2,3,4,5,1,2,3,4,5,1,答案,解析,根据以上数据可得出 A.种子是否经过处理与是否得病有关 B.种子是否经过处理与

8、是否得病无关 C.种子是否经过处理决定是否得病 D.有90%的把握认为种子经过处理与得病有关,即没有充足的理由认为种子是否经过处理跟得病有关.,5.对于线性回归方程 当x3时,对应的y的估计值是17,当x8时,对应的y的估计值是22,那么,该线性回归方程是_,根据线性回归方程判断当x_时,y的估计值是38.,2,3,4,5,1,答案,解析,24,令x1438,可得x24,即当x24时,y的估计值是38.,1.建立回归模型的基本步骤 (1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量; (2)画出散点图,观察它们之间的关系; (3)由经验确定回归方程的类型; (4)按照一定的规则估计回归方程中的参数; (5)得出结果后分析残差图是否有异常. 2.独立性检验是对两个分类变量间是否存在相关关系的一种案例分析方法.常用的直观方法为等高条形图,等高条形图由于是等高的,因此它能直观地反映两个分类变量之间的差异的大小,而利用假设的思想方法,计算出某一个随机变量K2的值来判断更精确些.,规律与方法,本课结束,

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 人教新课标A版 > 选修1-2