第 5 讲 函数的值域与最值1函数 y (xR)的值域为(D)x2x2 1A(0,1) B 0,1C(0,1 D 0,1)y 1 .x2x2 1 x2 1 1x2 1 1x2 1因为 x211,所以 01,解得 2 时,(12a)x 3a1 a,不成立12当 a0,且 a1,设函数 f(x)Erro
第32讲 浅谈最值Tag内容描述:
1、第 5 讲 函数的值域与最值1函数 y (xR)的值域为(D)x2x2 1A(0,1) B 0,1C(0,1 D 0,1)y 1 .x2x2 1 x2 1 1x2 1 1x2 1因为 x211,所以 01,解得 2 时,(12a)x 3a1 a,不成立12当 a0,且 a1,设函数 f(x)Error!的最大值为 1,则实数 a 的取值范围是 ,1) .13由题意知,当 x3 时,f (x)x21,所以当 x3 时,Error!解得 a0,b 为正数,则 f(x) 的定义域 D(, 0,) ,f (x)的值ax2 bxba域 A0, ),因为 DA ,所以 a0 不符合条件(3)若 aa 时无最大值,且2a(x 3 3x)max,所以 a1.10已知函数 f(x) (a0,x0) 1a 1x(1)若 f(x)在m,n上的值域是 m,n ,求 。
2、必考部分 第八章第八章 解析几何解析几何 第九讲 圆锥曲线的综合问题 第二课时 最值范围证明问题 1 考点突破互动探究 2 名师讲坛素养提升 返回导航 1 考点突破互动探究 返回导航 高考一轮总复习 数学新高考 第八章 解析几何 考点一 圆。
3、折叠问题与最值问题第13讲 满分晋级立体几何11级折叠问题与最值问题立体几何10级空间向量与立体几何综合新课标剖析当前形势立体几何在近五年北京卷(理)考查14-19分高考要求内容要求层次具体要求ABC空间线、面的位置关系理解空间中线面位置关系线、面平行或垂直的判定灵活运用平行或垂直的判定解决立体几何证明问题线、面平行或垂直的性质灵活运用平行或垂直的性质解决立体几何证明问题北京高考解读2009年2010年(新课标)2011年(新课标)2012年(新课标)2013年(新课标)第16题14分第8题5分第16题14分第7题5分第16题14分第16题14分第1。
4、 1 【备战 2019 年中考数学热点、难点突破】 考纲要求考纲要求: : 1. 会用描点法画出二次函数的图像,理解二次函数的性质。会用描点法画出二次函数的图像,理解二次函数的性质。 2. 利用二次函数的性质解决简单的实际问题;能解决二次函数与其他知识结合的有关问题。利用二次函数的性质解决简单的实际问题;能解决二次函数与其他知识结合的有关问题。 基础知识回顾基础知识回顾: : 二次函数的图象和性质 二次函数的 图象和性质 图象 x y y=ax2+bx+c(a0) O 来源:来源:Zxxk.Com来源:Z 【答案】17 【解析】 由图象的对称轴为直线 x=3,得 - 2。
5、第第 8 8 讲讲 二次函数的区间最值及应用二次函数的区间最值及应用 模块模块一:二次函数的一:二次函数的区间最值区间最值 1定轴定区间 对于二次函数 2 (0)yaxbxc a在mxn 上的最值问题(其中a、b、c、m和n均为定值, max y 表示 y的最大值, min y 表示y的最小值) (1)若自变量x为全体实数,如图,函数在 2 b x a 时,取到最小值,无最大值 (2)若 2 b 。
6、 1 【备战 2019 年中考数学热点、难点突破】 考纲要求考纲要求: : 1. 会用描点法画出二次函数的图像,理解二次函数的性质。会用描点法画出二次函数的图像,理解二次函数的性质。 2. 利用二次函数的性质解决简单的实际问题;能解决二次函数与其他知识结合的有关问题。利用二次函数的性质解决简单的实际问题;能解决二次函数与其他知识结合的有关问题。 基础知识回顾基础知识回顾: : 二次函数的图象和性质 二次函数的 图象和性质 图象来 源 :Z 【例【例 2】已知二次函数 yx22x2在 mxm1 时有最小值 m,则整数 m的值是( ) A1 B2 C1或 2 D 1 。
7、第第 8 8 讲讲 二次函数的区间最值及应用二次函数的区间最值及应用 模块模块一:二次函数的一:二次函数的区间最值区间最值 1定轴定区间 对于二次函数 2 (0)yaxbxc a在mxn 上的最值问题(其中a、b、c、m和n均为定值, max y表示 y的最大值, min y 表示y的最小值) (1)若自变量x为全体实数,如图,函数在 2 b x a 时,取到最小值,无最大值 (2)若 2 b n。
8、第第 3 讲讲 圆锥曲线中的最值圆锥曲线中的最值、范围范围、证明问题证明问题(大题大题) 热点一 最值问题 求圆锥曲线中三角形面积的最值的关键 (1)公式意识,把求三角形的面积转化为求距离、求角等; (2)方程思想,即引入参数,寻找关于参数的方程; (3)不等式意识,寻找关于参数的不等式,利用基本不等式等求最值. 例 1 (2019 邯郸模拟)已知椭圆 E:x 2 a2 y2 b21(ab0)的左、右焦点分别为 F1,F2,P 为 E 上 的一个动点,且|PF2|的最大值为 2 3,E 的离心率与椭圆 :x 2 2 y2 81 的离心率相等. (1)求 E 的方程; (2)直线 l 与 E 交于 M,。
9、必考部分 第二章 函数导数及其应用 第三讲 函数的单调性与最值 1 知识梳理双基自测 2 考点突破互动探究 3 名师讲坛素养提升 返回导航 1 知识梳理双基自测 返回导航 高考一轮总复习 数学新高考 第二章 函数导数及其应用 知识点一 函数。
10、第第 23 讲讲 最值问题一最值问题一 兴趣篇兴趣篇 1、3 个连续奇数相乘,所得乘积的个位数字最小可能是多少? 2、用 1、2、4 可以组成 6 个没有重复数字的三位数,这些三位数中相差最小的两个数之差是多少? 3、用 24 根长 1 厘米的火柴棒围成一个矩形,这个矩形的面积最大是多少?如果用 22 根火柴棒呢? 4、三个自然数的和是 19,它们的乘积最大可能是多少? 5、 (1)请将 。
11、 20192019 年中考数学总复习巅峰冲刺年中考数学总复习巅峰冲刺 专题专题 2020 面面积的最值问题积的最值问题 【难点突破】着眼思路,方法点拨【难点突破】着眼思路,方法点拨, 疑难突破;疑难突破; 面积最值问题的分析思路: 1.定方向:规则图形面积直接利用面积公式;不规则图形面积分解为规则图形再表示 2定目标:确定待求条件 3定解法:解决待求条件,题目中有角度或者三角函数值。 (解直角三角形) ,题目中只有长度。 (相似) 4定最值:根据函数解析式和范围求最值。 【名师原创】原创检测,关注素养,提炼主题;【名师原创】原创。
12、 20192019 年中考数学总复习巅峰冲刺年中考数学总复习巅峰冲刺 专题专题 1919 线段的最值问题线段的最值问题 【难点突破】着眼思路,方法点拨【难点突破】着眼思路,方法点拨, 疑难突破;疑难突破; 两条动线段的和的最小值问题, 常见的是典型的“牛喝水”问题, 关键是指出一条对称轴“河流” (如图 1) 三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两 条对称轴“反射镜面”(如图 2) 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最 。
13、第 10讲、依据特征构造最值问题(讲义)1. 如图,抛物线 y=-x2+bx+c与直线 AB交于 A(-4,-4), B(0,4)两点,直线 AC:16y交 y轴于点 C,点 E是直线 AB上的动点,过点 E作 EF x轴交 AC于点F,交抛物线于点 G(1)求抛物线 y=-x2+bx+c的表达式(2)连接 GB, EO,当四边形 GEOB是平行四边形时,求点 G的坐标(3)在 y轴上存在一点 H,连接 EH, HF,当点 E运动到什么位置时,以A, E, F, H为顶点的四边形是矩形?求出此时点 E, H的坐标;在的前提下,以点 E为圆心, EH长为半径作圆,点 M为 E上一动点,求12AM+CM的最小值 yxGOFECBAyxOC。
14、第十八讲 最值问题二 一、最值问题中的常用方法 a) 极端思考 在分析某些最值问题时,可以考虑把问题推向“极端” ,因为当某 一问题被推向“极端”后,往往能排除许多枝节问题的干扰,使问 题的“本来面目”清楚地显露出来,从而使问题迅速获解 b) 枚举比较 根据题目的要求,把可能的答案一一枚举出来,使题目的条件逐步 缩小范围,筛选比较出题目的答案 c) 分析推理 根据两个事物在某些属性上都相同, 猜测它们在其他属性上也有可 能相同的推理方法 d) 构造调整 在寻求解题途径难以进展时,构造出新的式子或图形,往往可以取 得出奇制胜。
15、第二十三讲 最值问题一 最值问题,即求最大值、最小值的问题 这类问题中, 有时满足题目条件的情况并不多, 这时我们就可以用枚举法将所有可能情 况一一列出,再比较大小 例题 1 (1)在五位数 12435 的某一位数字后面插入一个同样的数字可以得到一个六位数(例 如:在 2 的后面插入 2 可以得到 122435) 请问:能得到的最大六位数是多少? (2)在七位数 9876789 的某一位数字后面再插入一个同样的数字请问:能得到的最 小八位数是多少? 分析分析一共有多少种不同的插入数字的方法?你能将它们全部枚举出来吗? 练习 1 在五位数 41729 。
16、 20192019 年中考数学总复习巅峰冲刺年中考数学总复习巅峰冲刺 专题专题 2020 面积的最值问题面积的最值问题 【难点突破】着眼思路,方法点拨【难点突破】着眼思路,方法点拨, 疑难突破;疑难突破; 面积最值问题的分析思路: 1.定方向:规则图形面积直接利用面积公式;不规则图形面积分解为规则图形再表示 2定目标:确定待求条件 3定解法:解决待求条件,题目中有角度或者三角函数值。 (解直角三角形) ,题目中只有长度。 (相似) 4定最值:根据函数解析式和范围求最值。 【名师原创】原创检测,关注素养,提炼主题;【名师原创】原创。
17、 20192019 年中考数学总复习巅峰冲刺年中考数学总复习巅峰冲刺 专题专题 1919 线段的最值问题线段的最值问题 【难点突破】着眼思路,方法点拨【难点突破】着眼思路,方法点拨, 疑难突破;疑难突破; 两条动线段的和的最小值问题, 常见的是典型的“牛喝水”问题, 关键是指出一条对称轴“河流” (如图 1) 三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两 条对称轴“反射镜面”(如图 2) 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最 。
18、3 -9 -6 Ox y B A 第第 9 9 讲讲 二次函数的线段最值和面积最值二次函数的线段最值和面积最值 模块一:二次函数的线段最值模块一:二次函数的线段最值 1定点在同侧,需要对称转化为异侧; 2动线段端点不重合,需要平移转化到同一点 模块二:二次函数的面积最值模块二:二次函数的面积最值 1铅垂法: 1 2 S 水平宽 铅垂高 分三步走:分三步走: (1)过动点作铅垂线,交另外两。
19、3 -9 -6 Ox y B A 第第 9 9 讲讲 二次函数的线段最值和面积最值二次函数的线段最值和面积最值 模块一:二次函数的线段最值模块一:二次函数的线段最值 1定点在同侧,需要对称转化为异侧; 2动线段端点不重合,需要平移转化到同一点 模块二:二次函数的面积最值模块二:二次函数的面积最值 1铅垂法: 1 2 S 水平宽 铅垂高 分三步走:分三步走: (1)过动点作铅垂线,交另外两。
20、1第 32 讲 浅谈最值【专题简析】小朋友都知道,数是由数字组成的,0、1、2、3、4、5、6、7、8、9 这十个数字,可以组成许许多多的数。我们的生活中,少不了数和数字。数字组成的数有许多有趣的练习。比较数的大小,先要从最高位起,一位一位地比较,把不同的几个数字按照不同的方法排列,就可以组成不同的数,把几个数字按从大到小顺序排列,可以组成最大的数;把几个数字从小到大排列(注意:0 不能排在最高位) ,可以组成最小的数,如果要知道一共可以组成几个数,那就将几个数字依次排在最高位,然后确定其余各位上是什么数字。【例题。