-12-34-5 -54-3212345 54321Oyx第 3 讲、函数图象的分析与作图(讲义)1. 已知在平面直角坐标系 xOy 中(如图),抛物线 y=-x2+bx+c 经过点 A(2,2),对称轴是直线 x=1,顶点为 B(1)求这条抛物线的表达式和点 B 的坐标;(2)点 M 在对称轴上,
2018年中考数学满分冲刺讲义第7讲 拆解转化Tag内容描述:
1、-12-34-5 -54-3212345 54321Oyx第 3 讲、函数图象的分析与作图(讲义)1. 已知在平面直角坐标系 xOy 中(如图),抛物线 y=-x2+bx+c 经过点 A(2,2),对称轴是直线 x=1,顶点为 B(1)求这条抛物线的表达式和点 B 的坐标;(2)点 M 在对称轴上,且位于顶点上方,设它的纵坐标为 m,连接 AM,用含 m 的代数式表示 AMB 的正切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C 在 x 轴上原抛物线上一点 P 平移后的对应点为点 Q,如果 OP=OQ,求点 Q 的坐标2. 在平面直角坐标系 xOy 中,点 A 的坐标为(0,1),取一点 B(b,0),连接 A。
2、第 10讲、依据特征构造最值问题(讲义)1. 如图,抛物线 y=-x2+bx+c与直线 AB交于 A(-4,-4), B(0,4)两点,直线 AC:16y交 y轴于点 C,点 E是直线 AB上的动点,过点 E作 EF x轴交 AC于点F,交抛物线于点 G(1)求抛物线 y=-x2+bx+c的表达式(2)连接 GB, EO,当四边形 GEOB是平行四边形时,求点 G的坐标(3)在 y轴上存在一点 H,连接 EH, HF,当点 E运动到什么位置时,以A, E, F, H为顶点的四边形是矩形?求出此时点 E, H的坐标;在的前提下,以点 E为圆心, EH长为半径作圆,点 M为 E上一动点,求12AM+CM的最小值 yxGOFECBAyxOC。
3、第 9讲、依据特征构造补全模型(讲义)1. 如图,在 ABC中, AB=AC=23, BAC=120,点 D, E都在 BC上, DAE=60,若BD=2CE,则 DE的长为_ AD CB EAD CB E2. 如图,在矩形 ABCD中,将 ABC绕点 A按逆时针方向旋转一定角度后, BC的对应边BC 交 CD边于点 G连接 BB , CC ,若 AD=7, CG=4, AB =BG ,则 B的值是_ CB GDCBACB GDCBA3. 如图,在 ABC中, ABC=90,将 AB边绕点 A逆时针旋转 90得到线段 AD,将 AC边绕点 C顺时针旋转 90得到线段 CE, AE与 BD交于点 F若 DF= 2, EF= ,则 BC边的长为_ FDECBAFDECBA4. 如图,已知 ABC是等边三角形,。
4、 第 1 讲、依据特征作图填空压轴(讲义)1. 在矩形 ABCD 中, AB=4, BC=3,点 P 在线段 AB 上若将 DAP 沿 DP 折叠,使点 A 落在矩形对角线上的 A 处,则 AP 的长为_DCBA DCBA2. 已知点 A(0,4), B(7,0), C(7,4),连接 AC, BC 得到矩形 AOBC,点 D 在边 AC 上,将边 OA 沿 OD 折叠,点 A 的对应点为 A ,若点 A 到矩形较长两对边的距离之比为1:3,则点 A 的坐标为_yxO CBAyxO CBA3. 如图,矩形 ABCD 中, AD=4, AB=7,点 E 为 DC 上一动点, ADE 沿 AE 折叠,点 D 落在矩形 ABCD 内一点 D 处,若 BCD 为等腰三角形,则 DE 的长为_D 。
5、PD CBA第 2 讲、依据特征作图动态几何(讲义)1. 如图 1,在四边形 ABCD 中, AD BC, A= C,点 P 在边 AB 上(1)判断四边形 ABCD 的形状并加以证明(2)若 AB=AD,以过点 P 的直线为轴,将四边形 ABCD 折叠,使点 B, C 分别落在点B , C 处,且 BC 经过点 D,折痕与四边形的另一交点为 Q在图 2 中作出四边形 PBCQ (保留作图痕迹,不必说明作法和理由);如果 C=60,那么APB为何值时,BP AB图 1PD CBA图 22. 如图,在矩形 ABCD 中,点 E 是 AD 上的一个动点,连接 BE,作点 A 关于 BE 的对称点F,且点 F 落在矩形 ABCD 的内部,连接 AF。
6、第 6讲、分析特征转化逆向思考(讲义)1. 如图,已知抛物线2734yx的顶点为 D,并与 x轴相交于 A, B两点(点 A在点B的左侧),与 y轴相交于点 C(1)求点 A, B, C, D的坐标(2)取点 E(32,0)和点 F(0,34),直线 l经过 E, F两点,点 G是线段 BD的中点判断点 G是否在直线 l上,请说明理由在抛物线上是否存在点 M,使点 M关于直线 l的对称点在 x轴上?若存在,求出点M的坐标;若不存在,请说明理由 xyOAC BDxyOAC BDxyOAC BD2. 如图 1,在平面直角坐标系中,二次函数213yxbc的图象与坐标轴交于A, B, C三点,其中点 A的坐标为(-3,0)。
7、第 5 讲、分析特征转化整体思考(讲义)1. 如图,在平面直角坐标系中,等腰直角三角形 ABC 的顶点 A 的坐标为(0,-1),顶点 C在第一象限,直角顶点 B 在第四象限,且 AB x 轴已知抛物线21yx过A, B 两点,顶点为 P(1)求点 B, C 的坐标(2)平移抛物线21yx,使顶点 P 在直线 AC 上滑动,且与 AC 交于另一点Q若点 M 在直线 AC 下方,且为平移前抛物线上的点,当以 M, P, Q 为顶点的三角形是等腰直角三角形时,求出所有符合条件的点 M 的坐标yxO CBA A CO xy2. 如图 1,二次函数21yx的图象与一次函数 y=kx+b( k0)的图象交于A, B 两点。
8、第 4讲、依据背景转化(讲义)1. 已知点 A(-1,1), B(4,6)在抛物线 y=ax2+bx上(1)求抛物线的解析式(2)如图 1,点 F的坐标为(0, m)( m2),直线 AF交抛物线于另一点 G,过点 G作 x轴的垂线,垂足为 H设抛物线与 x轴的正半轴交于点 E,连接 FH, AE,求证:FH AE(3)如图 2,直线 AB分别交 x轴, y轴于 C, D两点点 P从点 C出发,沿射线 CD方向匀速运动,速度为每秒 2个单位长度;同时点 Q从原点 O出发,沿 x轴正方向匀速运动,速度为每秒 1个单位长度点 M是直线 PQ与抛物线的一个交点,当运动到 t秒时, QM=2PM,直接写出 t的值yx。
9、第 7 讲、拆解转化(讲义)1. 在平面直角坐标系中,直线314yx交 y 轴于点 B,交 x 轴于点 A,抛物线21yxbc经过点 B,与直线 交于点 C(4,-2)(1)求抛物线的解析式;(2)如图,横坐标为 m 的点 M 在直线 BC 上方的抛物线上,过点 M 作 ME y 轴交直线BC 于点 E,以 ME 为直径的圆交直线 BC 于另一点 D,当点 E 在 x 轴上时,求 DEM 的周长;(3)将 AOB 绕坐标平面内的某一点按顺时针方向旋转 90,得到 A1O1B1,点A, O, B 的对应点分别是 A1, O1, B1,若 A1O1B1的两个顶点恰好落在抛物线上,请直接写出点 A1的坐标OMEDCBAy xOy x Oy x。