第2课时平面与平面平行 基础过关 1.a,b,则a与b的位置关系是() A.平行B.异面 C.相交D.平行或异面或相交 答案D 解析如图(1),(2),(3)所示,a与b的关系分别是平行、异面或相交. 2.下列说法中正确的是() A.如果两个平面、只有一条公共直线a,就说平面、相交,并记作a B.两
第1课时 直线与平面平行的判定Tag内容描述:
1、第2课时平面与平面平行基础过关1.a,b,则a与b的位置关系是()A.平行B.异面C.相交D.平行或异面或相交答案D解析如图(1),(2),(3)所示,a与b的关系分别是平行、异面或相交.2.下列说法中正确的是()A.如果两个平面、只有一条公共直线a,就说平面、相交,并记作aB.两平面、有一个公共点A,就说、相交于过A点的任意一条直线C.两平面、有一个公共点A,就说、相交于A点,并记作AD.两平面ABC与DBC相交于线段BC答案A解析B不正确,若A,则,相交于过A点的一条直线;同理C不正确;D不正确,两个平面相交,其交线为直线而非线段.3.平面内有不共线的三点。
2、第二课时第二课时 直线与平面平行的性质直线与平面平行的性质 基础达标 一选择题 1.如图, 已知 S 为四边形 ABCD 外一点, 点 G, H 分别为 SB, BD 上的点, 若 GH平面 SCD,则 A.GHSA B.GHSD C.GH。
3、第2课时 直线与平面平行的性质,第1章 1.2.3 直线与平面的位置关系,学习目标 1.理解直线与平面平行的性质定理. 2.掌握直线与平面平行的性质定理,并能应用性质定理证明一些简单的问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 直线与平面平行的性质定理,思考1 如图,直线l平面,直线a平面,直线l与直线a一定平行吗?为什么?,答案 不一定,因为还可能是异面直线.,思考2 如图,直线a平面,直线a平面,平面平面直线b,满足以上条件的平面有多少个?直线a,b有什么位置关系?,答案 无数个,ab.,梳理,a,b,平行,思考辨析 判断正误。
4、1.2.3空间中的垂直关系第1课时直线与平面垂直学习目标1.理解直线与平面垂直的定义及性质.2.掌握直线与平面垂直的判定定理及推论,并会利用定理及推论解决相关的问题知识点一直线与平面垂直的定义及性质1直线与直线垂直如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直2直线与平面垂直的定义及性质定义及符号表示图形语言及画法有关名称重要结论如果一条直线(AB)和一个平面()相交于点O,并且和这个平面内过交点(O)的任何直线都垂直我们就说这条直线和这个平面互相垂直,记作AB把直线AB画成和表示平。
5、62.3垂直关系第1课时直线与平面的垂直学习目标 1了解直线与平面垂直的定义,两异面直线垂直的定义2.理解并掌握直线与平面垂直的判定定理,并会应用之判断直线与平面垂直. 3.掌握并会应用直线与平面垂直的性质,理解平行与垂直之间的关系知识链接生活中处处都有直线和平面垂直的例子,如旗杆和地面、路灯与地面等等在判断线面平行时我们有判定定理,那么判断线面垂直又有什么好办法呢?预习导引1直线与平面垂直的概念如果直线l与平面内的任意一条直线都垂直,我们就说直线l与平面互相垂直,记作l直线l叫作平面的垂线;平面叫作直线l的垂面2。
6、8 8. .6.26.2 直线与平面垂直直线与平面垂直 第一课时第一课时 直线与平面垂直的判定直线与平面垂直的判定 基础达标 一选择题 1.已知直线 m,n 是异面直线,则过直线 n 且与直线 m 垂直的平面 A.有且只有一个 B.至多有一。
7、1.2.3空间中的垂直关系第1课时直线与平面垂直一、选择题1若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A平面OAB B平面OACC平面OBC D平面ABC答案C解析OAOB,OAOC且OBOCO,OA平面OBC.2直线a直线b,直线b平面,则a与的关系是()Aa BaCa Da或a答案D解析若a,b平面,可证得ab;若a,过a作平面,c,b平面,c,则bc,ac,于是ba.故答案为D.3已知空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A垂直且相交 B相交但不一定垂直C垂直但不相交 D不垂直也不相交答案C解析如图,取BD中点O,连接AO,CO,则BDAO,BDCO,AOOCO,BD平面AOC,B。
8、52.2平行线的判定第1课时平行线的判定1掌握两直线平行的判定方法;(重点)2了解两直线平行的判定方法的证明过程;3灵活运用两直线平行的判定方法证明直线平行(难点)一、情境导入怎样用一个三角板和一把直尺画平行线呢?动手画一画二、合作探究探究点一:应用同位角相等,判断两直线平行如图,1255,3等于多少度?直线AB,CD平行吗?说明理由解析:利用对顶角相等得到32,再由已知12,等量代换得到同位角相等,利用“同位角相等,两直线平行”即可得到AB与CD平行解:355,ABCD.理由如下:32,1255,1355,ABCD(同位角相等,两直线平行)方法。
9、1.2.4平面与平面的位置关系第1课时两平面平行的判定与性质一、选择题1.下列四个说法中正确的是()A.平面内有无数个点到平面的距离相等,则B.a,b,且ab(,分别表示平面,a,b表示直线),则C.平面内一个三角形三边分别平行于平面内的一个三角形的三条边,则D.平面内的一个平行四边形的两边与平面内的一个平行四边形的两边对应平行,则答案C解析由面面平行的判定定理知C正确.2.如图所示,设E,F,E1,F1分别是长方体ABCDA1B1C1D1的棱AB,CD,A1B1,C1D1的中点,则平面EFD1A1与平面BCF1E1的位置关系是()A.平行 B.相交 C.异面 D.不确定答案A解。
10、8 8. .5.35.3 平面与平面平行平面与平面平行 第一课时第一课时 平面与平面平行的判定平面与平面平行的判定 基础达标 一选择题 1.下列四个说法中正确的是 A.平面 内有无数个点到平面 的距离相等,则 B.a,b,且 ab, 分别表。
11、第2课时直线与平面平行学习目标1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.学会用图形语言、符号语言表示三种位置关系.3.掌握直线与平面平行的判定定理和性质定理,并能利用两个定理解决空间中的平行关系问题知识点一直线与平面的位置关系直线与平面的位置关系定义图形语言符号语言直线在平面内有无数个公共点a直线与平面相交有且只有一个公共点aA直线与平面平行没有公共点a知识点二直线与平面平行的判定直线与平面平行的判定定理文字语言符号表示图形表示如果不在一个平面内一条直线和平面内的一条直线平行,那么这。
12、第2课时直线与平面平行一、选择题1若直线a,b是异面直线,a,则b与平面的位置关系是()A平行 B相交Cb D平行或相交答案D解析a,b异面,且a,b,b与平行或相交2.如图,已知S为四边形ABCD外一点,G,H分别为SB,BD上的点,若GH平面SCD,则()AGHSABGHSDCGHSCD以上均有可能答案B解析因为GH平面SCD,GH平面SBD,平面SBD平面SCDSD,所以GHSD,显然GH与SA,SC均不平行,故选B.3.P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出五个结论:OMPD;OM平面PCD;OM平面PDA;OM平面PBA;OM平面PBC.其中正确的个数为()A1 B2 C3 D4答案C解。
13、第2课时直线与平面平行的性质学习目标1.理解直线与平面平行的性质定理.2.掌握直线与平面平行的性质定理,并能应用性质定理证明一些简单的问题.知识点直线与平面平行的性质定理表示定理图形文字符号直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行ab一、线面平行的性质定理的应用命题角度1用线面平行的性质定理证明线线平行例1如图所示,在四棱锥PABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:APGH.证。
14、8 8. .5.25.2 直线与平面平行直线与平面平行 第一课时第一课时 直线与平面平行的判定直线与平面平行的判定 基础达标 一选择题 1.下列条件中能得出直线 m 与平面 平行的是 A.直线 m 与平面 内所有直线平行 B.直线 m 与平。
15、62.2平行关系第1课时直线与平面平行学习目标 1理解直线与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理、性质定理,并知道其地位和作用3能运用直线与平面平行的判定定理、性质定理证明一些空间线面关系的简单问题预习导引1直线与平面平行的定义ll2线面平行的判定定理、性质定理定理表示线面平行的判定定理线面平行的性质定理文字叙述平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行一条直线与一个平面平行,则过该直线的任一平面与此平面的交线与该直线平行符号。
16、62.2平行关系第1课时直线与平面平行基础过关1直线l是平面外的一条直线,下列条件中可推出l的是()Al与内的一条直线不相交Bl与内的两条直线不相交Cl与内的无数条直线不相交Dl与内的任意一条直线不相交答案D解析由线面平行的定义可知D正确2下列命题中正确的个数是()ab,ba;a,bab;ab,ab;a,bab.A0 B1 C2 D3答案A解析中还可能有a,中a,b还可能异面,中还可能b,中还可能a和b相交、异面3有以下三个命题:一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;过直线外一点,有且只有一个平面和已知直线平行;如果直线l平面,那。
17、1.2.3直线与平面的位置关系第1课时直线与平面平行的判定一、选择题1.下列条件中能得出直线m与平面平行的是()A.直线m与平面内所有直线平行B.直线m与平面内无数条直线平行C.直线m与平面没有公共点D.直线m与平面内的一条直线平行答案C解析A,本身说法错误;B,当直线m在平面内时,m与不平行;C,能推出m与平行;D,当直线m在平面内时,m与不平行.故选C.2.如果平面外有两点A,B,它们到平面的距离都是a,则直线AB和平面的位置关系一定是()A.平行 B.相交C.平行或相交 D.AB答案C解析结合图形可知选项C正确.3.若直线a平面,直线b平面,则a与b的位。
18、1.2.2空间中的平行关系第1课时平行直线、直线与平面平行基础过关1.能保证直线a与平面平行的条件是()A.a,b,abB.b,abC.b,c,acD.b,Aa,Ba,Cb,Db,且ACBD答案A解析由直线与平面平行的判定定理知A正确.2.下列命题中正确的是()A.若直线l上有无数个点不在平面内,则lB.若直线l与平面平行,则l与平面内的任意一条直线都平行C.如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行D.若直线l与平面平行,则l与平面没有公共点答案D解析A项中,若lA时,除A点所有的点均不在内;B项中,l时,中有无数条直线与l异面;C项中,另。
19、1.2.4平面与平面的位置关系第1课时两平面平行的判定与性质学习目标1.了解平面与平面的位置关系,掌握面面平行的判定定理、性质定理.2.会利用“线线平行”“线面平行”及“面面平行”相互之间的转化,来证明“线线平行”“线面平行”及“面面平行”等问题.3.了解两个平面间的距离的概念.知识点一两个平面的位置关系位置关系图形表示符号表示公共点平面与平面平行没有公共点平面与平面相交l有一条公共直线知识点二平面与平面平行的判定定理表示定理图形文字符号两个平面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么。
20、1.2.3直线与平面的位置关系第1课时直线与平面平行的判定学习目标1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.掌握空间中直线与平面平行的判定定理.知识点一直线与平面的位置关系位置关系直线a在平面内直线a在平面外直线a与平面相交直线a与平面平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示aaAa图形表示提示:利用公共点的个数可以判断直线与平面的位置关系.知识点二直线与平面平行的判定定理表示定理图形文字符号直线与平面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直。