第1课时 圆的标准方程 学案含答案

2.1直线与方程 2.1.1直线的斜率 第1课时直线的斜率 学习目标1.理解直线的斜率和倾斜角的概念.2.理解直线倾斜角的唯一性及直线斜率的存在性.3.了解斜率公式的推导过程,会应用斜率公式求直线的斜率. 知识点一直线的倾斜角 定义 在平面直角坐标系中,对于一条与x轴相交的直线,把x轴所在的直线绕

第1课时 圆的标准方程 学案含答案Tag内容描述:

1、2.1直线与方程2.1.1直线的斜率第1课时直线的斜率学习目标1.理解直线的斜率和倾斜角的概念.2.理解直线倾斜角的唯一性及直线斜率的存在性.3.了解斜率公式的推导过程,会应用斜率公式求直线的斜率.知识点一直线的倾斜角定义在平面直角坐标系中,对于一条与x轴相交的直线,把x轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角规定当直线l与x轴平行或重合时,规定直线的倾斜角为0记法图示范围0180作用(1)用倾斜角表示平面直角坐标系内一条直线的倾斜程度;(2)确定平面直角坐标系中一条直线位置的几何。

2、2.52.5 直线与圆圆与圆的位置关系直线与圆圆与圆的位置关系 2 25.15.1 直线与圆的位置关系直线与圆的位置关系 第第 1 1 课时课时 直线与圆的位置关系直线与圆的位置关系 1直线 3x4y120 与圆x12y129 的位置关系是。

3、2.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系一、选择题1.直线3x4y250与圆x2y29的位置关系为()A.相切 B.相交C.相离 D.相离或相切考点直线与圆的位置关系题点判断直线与圆的位置关系答案C2.若直线3x4ym0与圆x2y22x4y10没有公共点,则实数m的取值范围是()A.515C.m13 D.42,m15.故选B.3.已知圆x2y29的弦过点P(1,2),当弦长最短时,该弦所在直线的方程为()A.y20 B.x2y50C.2xy0 D.x10答案B解析当弦。

4、1.2直线的方程第1课时直线方程的点斜式一、选择题1.已知直线的方程是y2x1,则()A.直线经过点(1,2),斜率为1B.直线经过点(2,1),斜率为1C.直线经过点(1,2),斜率为1D.直线经过点(2,1),斜率为1答案C解析由y2x1,得y2(x1),所以直线的斜率为1,过点(1,2).2.已知直线的斜率是2,且在y轴上的截距是3,则此直线的方程是()A.y2x3 B.y2x3C.y2x3 D.y2x3考点直线的斜截式方程题点写出直线的斜截式方程答案A3.直线3x2y60的斜率为k,在y轴上的截距为b,则有()A.k,b3 B.k,b2C.k,b3 D.k,b3答案C解析由3x2y60,得yx3,则k,b3.4.与直线yx的斜率。

5、第第 2 课时课时 直线的极坐标方程直线的极坐标方程 学习目标 1.掌握直线的极坐标方程.2.能熟练进行曲线的极坐标方程和直角坐标方程间的 互化.3.能用极坐标方程解决相关问题 知识点 直线的极坐标方程 思考 1 直线 l 的极坐标方程 f(,)0 应该有什么要求? 答案 直线 l 上任意一点 M 至少有一个极坐标适合方程 f(,)0; 以 f(,)0 的解为坐标的点都在直线 l 上 思考 2 。

6、73.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系基础过关1以(2,1)为圆心且与直线3x4y50相切的圆的标准方程为()A(x2)2(y1)23 B(x2)2(y1)23C(x2)2(y1)29 D(x2)2(y1)29答案C解析根据题意知点(2,1)到直线3x4y50的距离与半径长相等,所以r3,所以所求圆的标准方程为(x2)2(y1)29.2圆x2y24上的点到直线xy20的距离的最大值为()A2 B2C. D0答案A解析圆心(0,0)到直线xy20的距离d,所求最大距离为2.3直线l:y1k(x1)和圆x2y22y0的关系是()A相离 B相切或相交C相交 D相切答案C解析l过定点A(1,1),1212210,点A在圆上直线x1过点A且为圆的切。

7、第第 2 课时课时 参数方程和普通方程的互化参数方程和普通方程的互化 学习目标 1.了解参数方程化为普通方程的意义.2.掌握参数方程化为普通方程的基本方法. 3.能根据参数方程与普通方程的互化灵活解决问题 知识点 参数方程和普通方程的互化 思考 1 要判断一个点是否在曲线上,你觉得用参数方程方便还是用普通方程方便? 答案 用普通方程比较方便 思考 2 把参数方程化为普通方程的关键是什么? 答案 。

8、第第 2 2 课时课时 直线与圆的方程的实际应用直线与圆的方程的实际应用 课时课时对点对点练练 1如图,圆弧形拱桥的跨度AB12 米,拱高CD4 米,则拱桥的直径为 A15 米 B13 米 C9 米 D6.5 米 答案 B 解析 如图,设圆。

9、第2课时圆与圆的位置关系学习目标 1掌握圆与圆的位置关系及判定方法2能利用直线与圆的位置关系解决简单的实际问题3体会用代数方法处理几何问题的思想知识链接1判断直线与圆的位置关系的两种方法为代数法、几何法2两圆的位置关系有外离、外切、相交、内切、内含预习导引1圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r1,r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系dr1r2dr1r2|r1r2|dr1r2d|r1r2|d|r1r2|(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断一元二。

10、第第 2 2 课时课时 直线与圆的方程的应用直线与圆的方程的应用 1yx的图象和圆 x2y24 在 x 轴上方所围成的图形的面积是 A.4 B.34 C.32 D 答案 D 解析 数形结合,所求面积是圆 x2y24 面积的14. 2已知圆 。

11、第2课时圆与圆的位置关系学习目标1.理解圆与圆的位置关系的种类.2.掌握圆与圆的位置关系的代数判定方法与几何判定方法,能够利用上述方法判定两圆的位置关系.3.体会根据圆的对称性灵活处理问题的方法和它的优越性.知识点两圆位置关系的判定已知两圆C1:(xx1)2(yy1)2r,C2:(xx2)2(yy2)2r,则圆心距d|C1C2|.两圆C1,C2有以下位置关系:位置关系公共点个数圆心距与半径的关系图示两圆相离0个dr1r2两圆内含d|r1r2|两圆相交2个|r1r2|dr1r2两圆内切1个d|r1r2|两圆外切dr1r21.如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()2.如果。

12、2.2.2直线方程的几种形式第1课时直线的点斜式方程学习目标1.掌握直线的点斜式方程和直线的斜截式方程.2.结合具体实例理解直线的方程和方程的直线概念及直线在y轴上的截距的含义知识点一直线的点斜式方程点斜式已知条件点P(x0,y0)和斜率k图示方程形式yy0k(xx0)适用条件斜率存在思考经过点P0(x0,y0)的所有直线是否都能用点斜式方程来表示?答案斜率不存在的直线不能用点斜式表示,过点P0且斜率不存在的直线为xx0.知识点二直线的斜截式方程1直线的斜截式方程斜截式已知条件斜率k和直线在y轴上的截距b图示方程式ykxb适用条件斜率存在2.直线。

13、1.2直线的方程第1课时直线方程的点斜式学习目标1.了解由斜率公式推导直线方程的点斜式的过程.2.掌握直线的点斜式方程与斜截式方程.3.会利用直线的点斜式与斜截式方程解决有关的实际问题.知识点一直线方程的点斜式点斜式已知条件点P(x0,y0)和斜率k图示方程形式yy0k(xx0)适用条件斜率存在思考经过点P0(x0,y0)的所有直线是否都能用点斜式方程来表示?答案斜率不存在的直线不能用点斜式表示,过点P0斜率不存在的直线为xx0.知识点二直线方程的斜截式斜截式已知条件斜率k和直线在y轴上的截距b图示方程式ykxb适用条件斜率存在1.直线的点斜式方。

14、2.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系学习目标1.掌握直线与圆的三种位置关系:相交、相切、相离.2.会用代数法和几何法来判定直线与圆的三种位置关系.3.会用直线与圆的位置关系解决一些实际问题.知识点直线AxByC0与圆(xa)2(yb)2r2的位置关系及判断位置关系相交相切相离公共点个数2个1个0个判定方法几何法:设圆心到直线的距离为ddr代数法:由消元得到一元二次方程,可得方程的判别式0001.若直线与圆有公共点,则直线与圆相交.()2.如果直线与圆组成的方程组有解,则直线和圆相交或相切.()3.若圆心到直线的距离大于半径,。

15、2.2.2直线与圆的位置关系第1课时直线与圆的位置关系学习目标1.掌握直线与圆的三种位置关系:相交、相切、相离.2.会用代数法和几何法来判定直线与圆的三种位置关系.3.会用直线与圆的位置关系解决一些实际问题.知识点直线与圆的三种位置关系及判定位置关系相离相切相交图示几何法比较d与r的大小drdrdr代数法依据方程组解的情况方程组无解方程组只有一组解方程组有两组不同解一、直线与圆的位置关系的判断例1求实数m的取值范围,使直线xmy30与圆x2y26x50分别满足:相交;相切;相离.解圆的方程化为标准形式为(x3)2y24,故圆心(3,0)到直线xmy3。

16、第2课时圆的一般方程学习目标1.掌握圆的一般方程及其特点.2.会将圆的一般方程化为圆的标准方程,并能熟练地指出圆心的位置和半径的大小.3.能根据某些具体条件,运用待定系数法确定圆的方程.知识点圆的一般方程方程条件图形x2y2DxEyF0D2E24F0表示以为圆心,以为半径的圆一、圆的一般方程命题角度1圆的一般方程的概念例1若方程x2y22mx2ym25m0表示圆,求实数m的取值范围,并写出圆心坐标和半径.解由表示圆的条件,得(2m)2(2)24(m25m)0,解得m0成立,则表示圆,否则不表示圆.(2)将方程配方后,根据圆的标准方程的特征。

17、2.2圆与方程2.2.1圆的方程第1课时圆的标准方程一、选择题1.圆(x1)2(y2)24的圆心与半径分别为()A.(1,2),2 B.(1,2),2C.(1,2),4 D.(1,2),4答案A2.以下各点在圆(x4)2y24内的是()A.(0,2) B.(2,0) C.(3,1) D.(1,3)答案C解析根据题意,依次分析选项:对于(0,2),有(04)222204,点在圆外,不符合题意;对于(2,0),有(24)2024,点在圆上,不符合题意;对于(3,1),有(34)21224,点在圆外,不符合题意.3.方程(x1)0所表示的曲线是()A.一个圆 B.两个点C.一个点和一个圆 D.一条直线和一个圆答案D解析(x1)0可化为x10或x2y23,方程(x1)0表示一条直线。

18、一一 曲线的参数方程曲线的参数方程 第第 1 课时课时 参数方程的概念及圆的参数方程参数方程的概念及圆的参数方程 学习目标 1.理解曲线参数方程的有关概念.2.掌握圆的参数方程.3.能够根据圆的参数方程 解决最值问题 知识点一 参数方程的概念 思考 在生活中,两个陌生的人通过第三方建立联系,那么对于曲线上点的坐标(x,y),直 接描述它们之间的关系比较困难时,可以怎么办呢? 答案 可以引入参数,。

19、三三 简单曲线的极坐标方程简单曲线的极坐标方程 第第 1 课时课时 圆的极坐标方程圆的极坐标方程 学习目标 1.了解极坐标方程的意义.2.掌握圆的极坐标方程.3.能根据极坐标方程研究曲线 的有关性质 知识点一 曲线的极坐标方程 (1)在极坐标系中,如果曲线 C 上任意一点的极坐标中至少有一个满足方程 f(,)0,并且 坐标适合方程 f(, )0 的点都在曲线 C 上, 那么方程 f(, )0 叫。

20、2.2圆与方程2.2.1圆的方程第1课时圆的标准方程学习目标1.掌握圆的定义及标准方程.2.能根据圆心、半径写出圆的标准方程,会用待定系数法求圆的标准方程.知识点一圆的标准方程1.方程(xa)2(yb)2r2(r0)叫做以点(a,b)为圆心,r为半径的圆的标准方程.2.以原点为圆心,r为半径的圆的标准方程为x2y2r2.知识点二点与圆的位置关系点M(x0,y0)与圆C:(xa)2(yb)2r2的位置关系及判断方法位置关系利用距离判断利用方程判断点M在圆上CMr(x0a)2(y0b)2r2点M在圆外CMr(x0a)2(y0b)2r2点M在圆内CMr(x0a)2(y0b)2r2一、求圆的标准方程例1求经过点P(1,1)和坐标原。

【第1课时 圆的标准方程 学案】相关DOC文档
第1课时 直线的斜率 学案(含答案)
第2课时 圆的一般方程 学案(含答案)
第1课时 圆的标准方程 学案(含答案)
标签 > 第1课时 圆的标准方程 学案含答案[编号:130237]