12 充分条件与必要条件121 充分条件与必要条件122 充要条件1理解充分条件、必要条件与充要条件的意义 2结合具体命题掌握判断充分条件、必要条件、充要条件的方法 3能够利用命题之间的关系判定充要关系或进行充要性的证明1充分条件与必要条件命题真假 “若 p,则 q”是真命题 “若 p,则 q”是假
充分条件和必要条件Tag内容描述:
1、12 充分条件与必要条件121 充分条件与必要条件122 充要条件1理解充分条件、必要条件与充要条件的意义 2结合具体命题掌握判断充分条件、必要条件、充要条件的方法 3能够利用命题之间的关系判定充要关系或进行充要性的证明1充分条件与必要条件命题真假 “若 p,则 q”是真命题 “若 p,则 q”是假命题推出关系 pq p q/ 条件关系p 是 q 的充分条件q 是 p 的必要条件p 不是 q 的充分条件q 不是 p 的必要条件(1)若 pq,则 p 是 q 的充分条件所谓充分,就是说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的 “有之必成立。
2、1.2 命题及其关系充分条件与必要条件命题及其关系充分条件与必要条件 典例精析典例精析 题型一 四种命题的写法及真假判断 例 1写出下列命题的逆命题否命题和逆否命题,并判断其真假. 1若 m,n 都是奇数,则 mn 是奇数; 2若 xy5,。
3、1.2.1 充分条件与必要条件,第一章 1.2 充分条件与必要条件,学习目标 1.理解充分条件、必要条件的意义. 2.会求(判定)某些简单命题的条件关系. 3.通过对充分条件、必要条件的概念的理解和运用,培养分析、判断和归纳的逻辑思维能力.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 充分条件与必要条件,充分,必要,充分,必要,思考 “x2”是“x3”的_条件,“x3”是“x2”的_条件.,知识点二 充分条件、必要条件与集合的关系,充分,必要,梳理 Ax|x满足条件p,Bx|x满足条件q,特别提醒:(1)pq,qp,p是q的充分不必要条件; (2)pq,qp,p是。
4、1.2 充分条件与必要条件1.2.1 充分条件与必要条件学习目标 1.理解充分条件、必要条件的意义.2.会求(判定)某些简单命题的条件关系.3.通过对充分条件、必要条件的概念的理解和运用,培养分析、判断和归纳的逻辑思维能力.知识点 充分条件与必要条件一般地,“若 p,则 q”为真命题,是指由 p 通过推理可以得出 q.这时,我们就说,由 p 可推出 q,记作 pq,并且说 p 是 q 的充分条件,q 是 p 的必要条件.(1)p 是 q 的充分条件与 q 是 p 的必要条件表述的是同一个逻辑关系,只是说法不同.p 是 q 的充分条件只反映了 pq,与 q 能否推出 p 没有任。
5、11.2 充分条件和必要条件充分条件和必要条件如图:p:开关 A 闭合,q:灯泡 B 亮问题 1:p 与 q 有什么关系?提示:命题 p 成立,命题 q 一定成立p:两三角形相似,q:对应角相等问题 2:p 与 q 有什么关系?提示:命题 p 成立,命题 q 一定成立一般地,如果 pq,那么称 p 是 q 的充分条件,q 是 p 的必要条件充要条件已知 p:整数 x 是 6 的倍数;q:整数 x 是 2 和 3 的倍数问题 1:“若 p,则 q”是真命题吗?提示:是 问题 2:“若 q,则 p”是真命题吗?提示:是问题 3:p 是 q 的什么条件?提示:充要条件1如果 pq,且 qp,那么称 p。
6、高中数学专题05 充分条件与必要条件【母题来源一】【2019年高考浙江卷】若a0,b0,则“a+b4”是 “ab4”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件【答案】A【解析】当时,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件故选A【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取的特殊值,从假设情况下推出合理结果或矛盾结果【母题来源二】【2018年高考浙江卷】已知平面,直线m,n满足m,n,。
7、高中数学专题07 充分条件与必要条件【母题来源】【2019年高考全国卷理数】设,为两个平面,则的充要条件是A内有无数条直线与平行 B内有两条相交直线与平行 C,平行于同一条直线 D,垂直于同一平面【答案】B【解析】由面面平行的判定定理知:内有两条相交直线都与平行是的充分条件;由面面平行的性质定理知,若,则内任意一条直线都与平行,所以内有两条相交直线都与平行是的必要条件.故的充要条件是内有两条相交直线与平行.故选B【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.【命题。
8、2.22.2 充分条件、必要条件、充要条件充分条件、必要条件、充要条件 第第 1 1 课时课时 充分条件充分条件、必要条件必要条件 学习目标 1.理解充分条件、必要条件的概念.2.了解充分条件与判定定理,必要条件与性质 定理的关系.3.能通过充分性、必要性解决简单的问题 知识点 充分条件与必要条件 “若 p,则 q”为真命题 “若 p,则 q”为假命题 推出关系 pq pq 条件关系 p 是 。
9、1 1. .2.32.3 充分条件、必要条件充分条件、必要条件 第第 1 1 课时课时 充分条件、必要条件充分条件、必要条件 学习目标 1.理解充分条件、必要条件的定义.2.会判断充分条件、必要条件.3.会根据充分不 必要条件、必要不充分条件求参数的取值范围 知识点 1充分条件与必要条件 命题真假 “若 p, 则 q”是真命题 “若 p,则 q”是假命题 推出关系 pq pq 条件关系 p 是 。
10、1 1.4 充分条件与必要条件充分条件与必要条件 课时分层作业课时分层作业 建议用时:60 分钟 合格基础练 一选择题 1已知集合 A1,a,B1,2,3,则a3是AB的 A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条。
11、1.41.4 充分充分条件条件与必要条件与必要条件 一选择题 1 2018海林市朝鲜族中学高一课时练习有以下四种说法,其中正确说法的个数为 1m 是实数是m 是有理数的充分不必要条件; 2ab0是a2b2的充要条件; 3x3是x22x30的。
12、1 1. .4 4 充分条件与必要条件充分条件与必要条件 基础巩固基础巩固 1.x3是不等式 x22x0的 A.充分不必要条件 B充分必要条件 C.必要不充分条件 D非充分非必要条件 2.设四边形 ABCD 的两条对角线为 AC,BD,则四。
13、 2 充分条件与必要条件充分条件与必要条件 一、选择题 1.“x 为无理数”是“x2为无理数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 考点 充分、必要条件的判断 题点 必要不充分条件的判断 答案 B 解析 当 x2为无理数时,x 为无理数. 2.设 nN,则“数列a2n为等比数列”是“数列an为等比数列”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案 B 3.设 xR,则 x 的一个必要不充分条件是( ) A.x4 B.x3 D.xa1”是“数列an为递增数列”的( ) A.充分不必要条件 B.必要不充分。
14、 2 充分条件与必要条件充分条件与必要条件 一、选择题 1“x 为无理数”是“x2为无理数”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分又不必要条件 考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 B 解析 当 x2为无理数时,x 为无理数 2设 a,bR,则“ab2”是“a1 且 b1”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分又不必要条件 考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 B 3设 xR,则 x 的一个必要不充分条件是( ) Ax3 Bx3 Cx4 Dx4 考点 充分条件、必要条件的判断 。
15、1 1.4.1 充分条件与必要条件充分条件与必要条件 1.4.2 充要条件充要条件 学 习 目 标 核 心 素 养 1.结合具体实例,理解充分条件必要条件充要条件的意义重点难点 2会求判断某些问题成立的充分条件必要条件充要条件重点 3能够利。
16、第一章第一章 集合与常用逻辑用语集合与常用逻辑用语 1.41.4 充分条件与必要条件充分条件与必要条件 本课是高中数学第一章第 4 节,充要条件是中学数学中最重要的数学概念之一, 它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数。
17、1 1.4 .4 充分条件与必要条件充分条件与必要条件 教学设计教学设计 本节内容比较抽象,首先从命题出发,分清命题的条件和结论,看条件能否推出结论,从而判断命题的真假;然后从命题出发结合实例引出充分条件必要条件充要条件这三个概念,再详细讲。
18、1 14.14.1 充分条件与必要条件充分条件与必要条件 学习目标 1.理解充分条件、必要条件的概念.2.了解充分条件与判定定理,必要条件与性质 定理的关系.3.能通过充分性、必要性解决简单的问题 知识点 充分条件与必要条件 “若 p,则 q”为真命题 “若 p,则 q”为假命题 推出关系 pq pq 条件关系 p 是 q 的充分条件 q 是 p 的必要条件 p 不是 q 的充分条件 q 不是 。
19、1.1命题及其关系11.2充分条件和必要条件学习目标1.理解充分条件、必要条件、充要条件的定义.2.会求某些简单问题成立的充分条件、必要条件、充要条件知识点一充分条件与必要条件的概念给出下列命题:(1)若xa2b2,则x2ab;(2)若ab0,则a0.思考1你能判断这两个命题的真假吗?答案(1)真命题,(2)假命题思考2命题(1)中条件和结论有什么关系?命题(2)中呢?答案命题(1)中只要满足条件xa2b2,必有结论x2ab;命题(2)中满足条件ab0,不一定有结论a0,还可能b0.梳理命题真假“若p则q”为真命题“若p则q”为假命题推出关系pqpq条件关系p是q的充分条件。
20、预习导学 预习导学课堂讲义 第1章常用逻辑用语 第1章常用逻辑用语 11命题及其关系 11.3充分条件和必要条件 高中数学选修1-1湘教版 预习导学 预习导学课堂讲义 第1章常用逻辑用语 学习目标 1理解充分条件、必要条件、充要条件的概念 2会判断所给条件是充分条件、必要条件、还是充要条件 预习导学 预习导学课堂讲义 第1章常用逻辑用语 知识链接 1判断下列两个命题的真假,并思考命题(1)中条件和。