专题突破一专题突破一 充分充分、必要条件的判断必要条件的判断 一、应用定义 例 1 (2018 浙江)已知平面 ,直线 m,n 满足 m,n,则“mn”是“m”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 考点 充分、必要条件的判断 题点 充分不必要条件的
1.4.1 充分条件与必要条件 学案含答案Tag内容描述:
1、专题突破一专题突破一 充分充分、必要条件的判断必要条件的判断 一、应用定义 例 1 (2018 浙江)已知平面 ,直线 m,n 满足 m,n,则“mn”是“m”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 考点 充分、必要条件的判断 题点 充分不必要条件的判断 答案 A 解析 若 m,n,且 mn,则一定有 m, 但若 m,n,且 m,则 m 与 n 有可能异面, “mn”是“m”的充分不必要条件. 故选 A. 点评 利用定义法判断充分、必要条件应按如下步骤进行:分清条件与结论,即分清哪一 个是条件,哪一个是结论;判断推式的真假,。
2、 1.4 课时课时 充分条件和必要条件充分条件和必要条件 一、单选题。本大题共一、单选题。本大题共 18 小题,每小题只有一个选项符合题意。小题,每小题只有一个选项符合题意。 1设aR,则“ 2 aa ”是“1a ”的( ) A充分不必要条件 B充要条件 C必要不充分条件 D既不充分也不必要条件 2“5x ”是“15x ”的 A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件 。
3、第二节第二节 命题及其关系命题及其关系充分条件与必要条件充分条件与必要条件 知识重温知识重温 一必记 3 个知识点 1命题 用语言符号或式子表达的,可以的陈述句叫做命题,其中的语句叫 做真命题,的语句叫做假命题 2四种命题及其相互关系 1四。
4、 1通过对典型数学命题的梳理,理解必要条件的意义,理解性质定理与必要条件的关系 2通过对典型数学命题的梳理,理解充分条件的意义,理解判定定理与充分条件的关系 3通过对典型数学命题的梳理,理解充要条件的意义,理解数学定义与充要条件的关系 教 材 展 示教 材 展 示 课课堂堂 4 4 充分条件充分条件与必要条件与必要条件 知识点 1:充分条件、必。
5、第一章 集合与常用逻辑用语 1.41.4 充分条件与必要条件充分条件与必要条件 1.4.11.4.1 充分条件与必要条件充分条件与必要条件 1.4.21.4.2 充要条件充要条件 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 。
6、12 充分条件与必要条件121 充分条件与必要条件122 充要条件1理解充分条件、必要条件与充要条件的意义 2结合具体命题掌握判断充分条件、必要条件、充要条件的方法 3能够利用命题之间的关系判定充要关系或进行充要性的证明1充分条件与必要条件命题真假 “若 p,则 q”是真命题 “若 p,则 q”是假命题推出关系 pq p q/ 条件关系p 是 q 的充分条件q 是 p 的必要条件p 不是 q 的充分条件q 不是 p 的必要条件(1)若 pq,则 p 是 q 的充分条件所谓充分,就是说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的 “有之必成立。
7、 2 充分条件与必要条件充分条件与必要条件 学习目标 1.理解充分条件、必要条件、充要条件的定义.2.会求某些简单问题成立的充分条 件、必要条件、充要条件.3.能够利用命题之间的关系判定充要关系或进行充要条件的证明. 知识点一 充分条件与必要条件 命题真假 “若 p, 则 q”是真命题 “若 p, 则 q”是假命题 推出关系 pq pq 条件关系 p 是 q 的充分条件 q 是 p 的必要条件 p 不是 q 的充分条件 q 不是 p 的必要条件 知识点二 充要条件 如果既有 pq,又有 qp,就记作 pq.此时,我们说,p 是 q 的充分必要条件,简称充要 条件. 特别提醒:。
8、1.3.1 推出与充分条件、必要条件学习目标 1.结合具体实例,理解充分条件、必要条件及充要条件的意义.2.能准确判断各类命题中的充分性、必要性、充要性知识点一 命题的结构思考 你能把“内错角相等”写成“若,则”的形式吗?答案 若两个角为内错角,则这两个角相等梳理 命题的形式:在数学中,经常遇到“如果 p,则(那么) q”的形式的命题,其中 p 称为命题的条件,q 称为命题的结论知识点二 充分条件与必要条件给出下列命题:(1)如果 xa2b 2,则 x2ab;(2)如果 ab0,则 a0.思考 1 你能判断这两个命题的真假吗?答案 (1)真命题;(2) 假命。
9、1.3.1 推出与充分条件、必要条件学习目标:1.理解充分条件、必要条件、充要条件的概念(重点)2.会求某些简单问题成立的充分条件、必要条件、充要条件(易混点)3.能够利用命题之间的关系判定充要条件或进行充要条件的证明(重点、难点)自 主 预 习探 新 知1充分条件与必要条件(1)当命题“如果 p,则 q”经过推理证明断定为真命题时,我们就说,由p 可推出 q,记作 pq,并且说 p 是 q 的充分条件,q 是 p 的必要条件这几种形式的表达,讲的是同一个逻辑关系,只是说法不同而已(2)若 pq,但 q p,称 p 是 q 的充分不必要条件, /若 qp,但 p q,。
10、1.2 充分条件与必要条件1.2.1 充分条件与必要条件学习目标 1.理解充分条件、必要条件的意义.2.会求(判定)某些简单命题的条件关系.3.通过对充分条件、必要条件的概念的理解和运用,培养分析、判断和归纳的逻辑思维能力.知识点 充分条件与必要条件一般地,“若 p,则 q”为真命题,是指由 p 通过推理可以得出 q.这时,我们就说,由 p 可推出 q,记作 pq,并且说 p 是 q 的充分条件,q 是 p 的必要条件.(1)p 是 q 的充分条件与 q 是 p 的必要条件表述的是同一个逻辑关系,只是说法不同.p 是 q 的充分条件只反映了 pq,与 q 能否推出 p 没有任。
11、 1.2 命题及其关系命题及其关系、充分条件与必要条件充分条件与必要条件 最新考纲 考情考向分析 1.理解命题的概念.2.了解“若 p,则 q”形式的命 题及其逆命题、否命题与逆否命题,会分析四种 命题的相互关系. 3.理解必要条件、充分条件与充要条件的含义. 命题的真假判断和充分必要条件的判定 是考查的主要形式,多与集合、函数、不 等式、立体几何中的线面关系相交汇,考 查学生的推理能力, 题型为选择、 填空题, 低档难度. 1命题 用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真 命题,判断为假的。
12、高中数学专题05 充分条件与必要条件【母题来源一】【2019年高考浙江卷】若a0,b0,则“a+b4”是 “ab4”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件【答案】A【解析】当时,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件故选A【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取的特殊值,从假设情况下推出合理结果或矛盾结果【母题来源二】【2018年高考浙江卷】已知平面,直线m,n满足m,n,。
13、高中数学专题07 充分条件与必要条件【母题来源】【2019年高考全国卷理数】设,为两个平面,则的充要条件是A内有无数条直线与平行 B内有两条相交直线与平行 C,平行于同一条直线 D,垂直于同一平面【答案】B【解析】由面面平行的判定定理知:内有两条相交直线都与平行是的充分条件;由面面平行的性质定理知,若,则内任意一条直线都与平行,所以内有两条相交直线都与平行是的必要条件.故的充要条件是内有两条相交直线与平行.故选B【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.【命题。
14、2.22.2 充分条件、必要条件、充要条件充分条件、必要条件、充要条件 第第 1 1 课时课时 充分条件充分条件、必要条件必要条件 学习目标 1.理解充分条件、必要条件的概念.2.了解充分条件与判定定理,必要条件与性质 定理的关系.3.能通过充分性、必要性解决简单的问题 知识点 充分条件与必要条件 “若 p,则 q”为真命题 “若 p,则 q”为假命题 推出关系 pq pq 条件关系 p 是 。
15、1 1. .2.32.3 充分条件、必要条件充分条件、必要条件 第第 1 1 课时课时 充分条件、必要条件充分条件、必要条件 学习目标 1.理解充分条件、必要条件的定义.2.会判断充分条件、必要条件.3.会根据充分不 必要条件、必要不充分条件求参数的取值范围 知识点 1充分条件与必要条件 命题真假 “若 p, 则 q”是真命题 “若 p,则 q”是假命题 推出关系 pq pq 条件关系 p 是 。
16、 2 充分条件与必要条件充分条件与必要条件 一、选择题 1.“x 为无理数”是“x2为无理数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 考点 充分、必要条件的判断 题点 必要不充分条件的判断 答案 B 解析 当 x2为无理数时,x 为无理数. 2.设 nN,则“数列a2n为等比数列”是“数列an为等比数列”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案 B 3.设 xR,则 x 的一个必要不充分条件是( ) A.x4 B.x3 D.xa1”是“数列an为递增数列”的( ) A.充分不必要条件 B.必要不充分。
17、 2 充分条件与必要条件充分条件与必要条件 一、选择题 1“x 为无理数”是“x2为无理数”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分又不必要条件 考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 B 解析 当 x2为无理数时,x 为无理数 2设 a,bR,则“ab2”是“a1 且 b1”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分又不必要条件 考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 B 3设 xR,则 x 的一个必要不充分条件是( ) Ax3 Bx3 Cx4 Dx4 考点 充分条件、必要条件的判断 。
18、1.1命题及其关系11.2充分条件和必要条件学习目标1.理解充分条件、必要条件、充要条件的定义.2.会求某些简单问题成立的充分条件、必要条件、充要条件知识点一充分条件与必要条件的概念给出下列命题:(1)若xa2b2,则x2ab;(2)若ab0,则a0.思考1你能判断这两个命题的真假吗?答案(1)真命题,(2)假命题思考2命题(1)中条件和结论有什么关系?命题(2)中呢?答案命题(1)中只要满足条件xa2b2,必有结论x2ab;命题(2)中满足条件ab0,不一定有结论a0,还可能b0.梳理命题真假“若p则q”为真命题“若p则q”为假命题推出关系pqpq条件关系p是q的充分条件。
19、1 14.14.1 充分条件与必要条件充分条件与必要条件 学习目标 1.理解充分条件、必要条件的概念.2.了解充分条件与判定定理,必要条件与性质 定理的关系.3.能通过充分性、必要性解决简单的问题 知识点 充分条件与必要条件 “若 p,则 q”为真命题 “若 p,则 q”为假命题 推出关系 pq pq 条件关系 p 是 q 的充分条件 q 是 p 的必要条件 p 不是 q 的充分条件 q 不是 。