第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,第4课时 二次函数y=a(x-h)2+k的图象与性质,2.2 二次函数的图象和性质,1.会用描点法画出y=a(x-h)2+k (a 0)的图象. 2.掌握二次函数y=a(x-h)2+k (a 0)的图象的性质并会应用.(重点) 3.理解二次函
北师大版九年级下数学3.5确定圆的条件课件Tag内容描述:
1、第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,第4课时 二次函数y=a(x-h)2+k的图象与性质,2.2 二次函数的图象和性质,1.会用描点法画出y=a(x-h)2+k (a 0)的图象. 2.掌握二次函数y=a(x-h)2+k (a 0)的图象的性质并会应用.(重点) 3.理解二次函数y=a(x-h)2+k (a 0)与y=ax2 (a 0)之间的联系.(难点),导入新课,复习引入,1.说出下列函数图象的开口方向,对称轴,顶点,最值和增减变化情况:,(1)y=ax2(2)y=ax2+c(3)y=a(x-h)2,2.请说出二次函数y=-2x2的开口方向、顶点坐标、对称轴及最值?,3.把y=-2x2的图象,向上平移3个单位,y=-2x2+3,向左平。
2、2.2 二次函数的图象和性质,第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,第3课时 二次函数y=a(x-h)2的图象与性质,情境引入,1.会画二次函数y=a(x-h)2的图象.(难点) 2.掌握二次函数y=a(x-h)2的性质.(重点) 3.比较函数y=ax2 与 y=a(x-h)2的联系.,导入新课,复习引入,向上,向下,y轴(直线x=0),y轴(直线x=0),(0,c),(0,c),当x0时,y随x增大而增大.,当x0时,y随x增大而减小.,x=0时,y最小值=c,x=0时,y最大值=c,问题1 说说二次函数y=ax2+c(a0)的图象的特征.,问题2 二次函数 y=ax2+c(a0)与 y=ax2(a 0) 的图象有何关系?,二。
3、3.6 直线和圆的位置关系,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,第2课时 切线的判定及三角形的内切圆,1.理解并掌握圆的切线的判定定理及运用.(重点) 2.三角形的内切圆和内心的概念及性质.(难点),学习目标,砂轮上打磨工件时飞出的火星,下图中让你感受到了直线与圆的哪种位置关系?如何判断一条直线是否为切线呢?,导入新课,情境引入,讲授新课,问题1 如图,OA是O的半径, 经过OA 的外端点A, 作一条直线lOA,圆心O 到直线l 的距离是多少? 直线l 和O有怎样的位置关系?,合作探究,l,由圆的切线定义可知直线l 与圆O 相切.,l,过半。
4、2.5 二次函数与一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第2课时 利用二次函数求方程的近似根,第二章 二次函数,1.会用二次函数图象求一元二次方程的近似解及一元二次不等式的解集; (重点) 2.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点),学习目标,问题:上节课我们学习了一元二次方程ax2+bx+c=0(a0)和二次函数y=ax2+bx+c(a0)之间的关系,那么如何利用二次函数图象直接求出一元二次方程的根呢?,导入新课,回顾与思考,例1:求一元二次方程 的近似根(精确到0.1).,分析:一元二次方程 x-2x-1=0 的根就。
5、3.6 直线和圆的位置关系,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,第1课时 直线和圆的位置关系及切线的性质,北师大版九年级下册数学教学课件,1.理解直线与圆有相交、相切、相离三种位置关系. 2.能根据圆心到直线的距离d和圆的半径r之间的数量关系,判断出直线与圆的位置关系.(重点) 3.理解并掌握圆的切线的性质定理.(重点),学习目标,点和圆的位置关系有几种?,dr,d=r,dr,用数量关系如何来 判断呢?,点在圆内,点在圆上,点在圆外,(令OP=d ),导入新课,导入新课,观赏视频,问题1 如果我们把太阳看成一个圆,地平线看成一条直线,那你。
6、1.5 三角函数的应用,导入新课,讲授新课,当堂练习,课堂小结,第一章 直角三角形的边角关系,1.正确理解方位角、仰角和坡角的概念;(重点) 2.能运用解直角三角形知识解决方位角、仰角和坡角的问题.(难点),情境引入,我们已经知道轮船在海中航行时,可以用方位角准确描述它的航行方向.,那你知道如何结合方位角等数据进行计算,帮助轮船在航行中远离危险吗?,引例 如图,海中有一个小岛A,该岛四周10n mile内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55的B处,往东行驶20n mile后到达该岛的南偏西25的C处。之后,货轮继续向东航行.货轮继。
7、1.3 三角函数的计算,导入新课,讲授新课,当堂练习,课堂小结,第一章直角三角形的边角关系,1.复习并巩固锐角三角函数的相关知识. 2.学会利用计算器求三角函数值并进行相关计算. (重点) 3.学会利用计算器根据三角函数值求锐角度数并计算.(难点),学习目标,导入新课,回顾与思考,30、45、60角的正弦值、余弦值和正切值如下表:,三角 函数,问题: 如图,当登山缆车的吊箱经过点A到达点B时,它走过了200m.已知缆车行驶的路线与水平面的夹角为=16,那么缆车垂直上升的距离是多少?(结果精确到0.01m),问题: 如图,当登山缆车的吊箱经过点A到达点B。
8、2.4 二次函数的应用,第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,第1课时 图形面积的最大值,学习目标,1.分析实际问题中变量之间的二次函数关系.(难点) 2.会运用二次函数求实际问题中的最大值或最小值. 3.能应用二次函数的性质解决图形中最大面积问题.(重点),导入新课,复习引入,写出下列抛物线的开口方向、对称轴和顶点坐标.(1)y=x2-4x-5; (2)y=-x2-3x+4.,解:(1)开口方向:向上;对称轴:x=2;顶点坐标:(2,-9);,(2)开口方向:向下;对称轴:x= ;顶点坐标:( , );,由于抛物线 y = ax 2 + bx + c 的顶点是最。
9、3.9 弧长及扇形的面积,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,1.理解弧长和扇形面积公式的探求过程.(难点) 2.会利用弧长和扇形面积的计算公式进行计算. (重点),学习目标,问题1 你注意到了吗,在运动会的4100米比赛中,各选手的起跑线不再同一处,你知道这是为什么吗?,问题2 怎样来计算弯道的“展直长度”?,因为要保证这些弯道的“展直长度”是一样的.,导入新课,(1)半径为R的圆,周长是多少?,(2)1的圆心角所对弧长是多少?,n,O,(4) n的圆心角所对弧长l是多少?,1,C=2R,(3)n圆心角所对的弧长是1圆心角所对的弧长的多少倍?,。
10、,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,3.4 圆周角和圆心角的关系,第2课时 圆周角和直径的关系及圆内接四边形,1.复习并巩固圆周角和圆心角的相关知识. 2.理解并掌握圆内接四边形的概念及性质并学会运用. (重点),学习目标,问题1 什么是圆周角?,导入新课,复习引入,特征:, 角的顶点在圆上., 角的两边都与圆相交.,顶点在圆上,并且两边都和圆相交的角叫圆周角.,问题2 什么是圆周角定理?,圆上一条弧所对的圆周角等于它所对的圆心角的一半.,即 ABC = AOC.,导入新课,情境引入,如图是一个圆形笑脸,给你一个三角板,你有办法确定这个。
11、3.2 圆的对称性,第三章 圆,导入新课,讲授新课,当堂练习,课堂小结,北师大版九年级下册数学教学课件,1.掌握圆是轴对称图形及圆的中心对称性和旋转不变性. 2.探索圆心角、弧、弦之间关系定理并利用其解决相关问题.(重点) 3.理解圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的意义.(难点),学习目标,熊宝宝要过生日了!要把蛋糕平均分成四块,你会分吗?,情境引入,导入新课,讲授新课,问题1 圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?,问题2 你是怎么得出结论的?,圆的对称性: 圆是轴对称图形,其对称轴。
12、2.3 确定二次函数的表达式,第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,北师大版九年级下册数学教学课件,1.会用待定系数法求二次函数的表达式.(难点) 2.会根据待定系数法解决关于二次函数的相关问题.(重点),导入新课,复习引入,1.一次函数y=kx+b(k0)有几个待定系数?通常需要已知几个点的坐标求出它的表达式?,2.求一次函数表达式的方法是什么?它的一般步骤是什么?,2个,2个,待定系数法,(1)设:(表达式) (2)代:(坐标代入) (3)解:方程(组) (4)还原:(写表达式),讲授新课,典例精析,例1.已知二次函数yax2 c的图象经过。
13、3.8 圆内接正多边形,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,1.了解正多边形和圆的有关概念. 2.理解并掌握正多边形半径、中心角、边心距、边长之间的关系. (重点) 3.会应用正多边形和圆的有关知识解决实际问题.(难点),学习目标,问题:观看大屏幕上这些美丽的图案,都是在日常生活中我们经常能看到的.你能从这些图案中找出类似的图形吗?,导入新课,观察与思考,问题1 什么叫做正多边形?,各边相等,各角也相等的多边形叫做正多边形.,问题2 矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?,不是,因为矩形不符合各边相等;,不。
14、3.4 圆周角和圆心角的关系,第三章 圆,第1课时 圆周角和圆心角的关系,导入新课,讲授新课,当堂练习,课堂小结,1.理解圆周角的概念,会叙述并证明圆周角定理. 2.理解圆周角与圆心角的关系并能运用圆周角定理及推论解决简单的几何问题.(重点) 3.了解圆周角的分类,会推理验证“圆周角与圆心角的关系”.(难点),学习目标,问题1 什么叫圆心角?指出图中的圆心角?,顶点在圆心,角的两边与圆相交的角叫圆心角, 如BOC.,导入新课,A,复习引入,在射门过程中,球员射中球门的难易与它所处的位置B对球门AE的张角( ABE )有关.,问题2 图中的三个张角ABE。
15、2.3 确定二次函数的表达式,第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,1.会用待定系数法求二次函数的表达式.(难点) 2.会根据待定系数法解决关于二次函数的相关问题.(重点),导入新课,复习引入,1.一次函数y=kx+b(k0)有几个待定系数?通常需要已知几个点的坐标求出它的表达式?,2.求一次函数表达式的方法是什么?它的一般步骤是什么?,2个,2个,待定系数法,(1)设:(表达式) (2)代:(坐标代入) (3)解:方程(组) (4)还原:(写表达式),讲授新课,典例精析,例1.已知二次函数yax2 c的图象经过点(2,3) 和(1,3),求这个二次函数。
16、3.2 圆的对称性,第三章 圆,导入新课,讲授新课,当堂练习,课堂小结,1.掌握圆是轴对称图形及圆的中心对称性和旋转不变性. 2.探索圆心角、弧、弦之间关系定理并利用其解决相关问题.(重点) 3.理解圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的意义.(难点),学习目标,熊宝宝要过生日了!要把蛋糕平均分成四块,你会分吗?,情境引入,导入新课,讲授新课,问题1 圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?,问题2 你是怎么得出结论的?,圆的对称性: 圆是轴对称图形,其对称轴是任意一条过圆心的直线.,用折叠。
17、3.1 圆,第三章 圆,导入新课,讲授新课,当堂练习,课堂小结,1.认识圆,理解圆的本质属性.(重点) 2.认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.(难点) 3.初步了解点与圆的位置关系.,学习目标,导入新课,观察与思考,观察下列生活中的图片,找一找你所熟悉的图形.,情境引入,一些学生正在做投圈游戏,他们呈“一”字排开这样的队形对每一人都公平吗?你认为他们应当排成什么样的队形?,讲授新课,r,O,A,问题 观察画圆的过程,你能说出圆是如何画出来的吗?,圆的旋转定义,在一个平面内,线。
18、3.5 确定圆的条件确定圆的条件 1理解平面内确定一个圆的条件,掌 握经过不在同一直线上三个点作圆的方法; (重点) 2理解三角形的外接圆、三角形外心 等概念;(重点) 3利用三角形外心解决实际问题(难 点) 一、情境导入 经过一点可以作无数条直线 经过两点 只能作一条直线那么经过一点能作几个 圆?经过两点、三点呢? 二、合作探究 探究点一:确定圆的条件 【类型一】 判断确定圆的条件 下列关于确定一个圆的说法中, 正确的是( ) A三个点一定能确定一个圆 B以已知线段为半径能确定一个圆 C以已知线段为直径能确定一个圆 D菱形的四个顶点能。
19、3.5 确定圆的条件,第三章 圆,导入新课,讲授新课,当堂练习,课堂小结,北师大版九年级下册数学教学课件,1.复习并巩固圆中的基本概念. 2.理解并掌握三点确定圆的条件并会应用. (重点) 3.理解并掌握三角形的外接圆及外心的概念.(难点),学习目标,导入新课,情境引入,假如旋转木马真如短片所说,是中国发明的,你能将旋转木马破碎的圆形底座还原,以帮助考古学家画进行深入的研究吗?,要确定一个圆必须满足几个条件?,问题1 构成圆的基本要素有那些?,导入新课,复习与思考,o,r,两个条件:,圆心,半径,那么我们又该如何画圆呢?,问题2 过一点可以作几。
20、3.5 确定圆的条件,第三章 圆,导入新课,讲授新课,当堂练习,课堂小结,1.复习并巩固圆中的基本概念. 2.理解并掌握三点确定圆的条件并会应用. (重点) 3.理解并掌握三角形的外接圆及外心的概念.(难点),学习目标,导入新课,情境引入,假如旋转木马真如短片所说,是中国发明的,你能将旋转木马破碎的圆形底座还原,以帮助考古学家画进行深入的研究吗?,要确定一个圆必须满足几个条件?,问题1 构成圆的基本要素有那些?,导入新课,复习与思考,o,r,两个条件:,圆心,半径,那么我们又该如何画圆呢?,问题2 过一点可以作几条直线?,问题3 过几点可以确定一。