8 8. .5.25.2 直线与平面平行直线与平面平行 第一课时第一课时 直线与平面平行的判定直线与平面平行的判定 基础达标 一选择题 1.下列条件中能得出直线 m 与平面 平行的是 A.直线 m 与平面 内所有直线平行 B.直线 m 与平,第二课时第二课时 直线与平面平行的性质直线与平面平行的性质
8.6.1直线与直线垂直 课后作业含答案Tag内容描述:
1、8 8. .5.25.2 直线与平面平行直线与平面平行 第一课时第一课时 直线与平面平行的判定直线与平面平行的判定 基础达标 一选择题 1.下列条件中能得出直线 m 与平面 平行的是 A.直线 m 与平面 内所有直线平行 B.直线 m 与平。
2、第二课时第二课时 直线与平面平行的性质直线与平面平行的性质 基础达标 一选择题 1.如图, 已知 S 为四边形 ABCD 外一点, 点 G, H 分别为 SB, BD 上的点, 若 GH平面 SCD,则 A.GHSA B.GHSD C.GH。
3、1.2.2空间中的平行关系第1课时平行直线、直线与平面平行基础过关1.能保证直线a与平面平行的条件是()A.a,b,abB.b,abC.b,c,acD.b,Aa,Ba,Cb,Db,且ACBD答案A解析由直线与平面平行的判定定理知A正确.2.下列命题中正确的是()A.若直线l上有无数个点不在平面内,则lB.若直线l与平面平行,则l与平面内的任意一条直线都平行C.如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行D.若直线l与平面平行,则l与平面没有公共点答案D解析A项中,若lA时,除A点所有的点均不在内;B项中,l时,中有无数条直线与l异面;C项中,另。
4、2.3直线与圆、圆与圆的位置关系(一)基础过关1.已知圆C与直线xy0及xy40都相切,圆心在直线xy0上,则圆C的方程为()A.(x1)2(y1)22 B.(x1)2(y1)22C.(x1)2(y1)22 D.(x1)2(y1)22解析由条件知xy0与xy40都与圆相切,且平行,所以圆C的圆心C在直线xy20上.由得圆心C(1,1).又因为两平行线间距离d2,所以所求圆的半径长r,故圆C的方程为(x1)2(y1)22.答案B2.在圆x2y22x6y0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.5 B.10 C.15 D.20解析圆的方程化为标准形式为(x1)2(y3)210,由圆的性质可知ACBD,最长弦|AC|2,最短弦BD。
5、2.3直线与圆、圆与圆的位置关系(二)基础过关1.若圆C1:(x2)2(ym)29与圆C2:(xm)2(y1)24外切,则m的值为()A.2 B.5C.2或5 D.不确定解析两圆的圆心分别为(2,m),(m,1),两圆的半径分别为3,2,由题意得32,解得m2或5.答案C2.已知半径为1的动圆与圆(x5)2(y7)216相切,则动圆圆心的轨迹方程是()A.(x5)2(y7)225B.(x5)2(y7)217或(x5)2(y7)215C.(x5)2(y7)29D.(x5)2(y7)225或(x5)2(y7)29解析设动圆的圆心为(x,y),若相内切,则有413,即(x5)2(y7)29;若相外切,则有415,即(x5)2(y7)225,故所求动圆圆心的轨迹方程为(x5)2(y7)29或(x5)2(y7)225.。
6、2.3.3直线与圆的位置关系基础过关1.已知圆x2y22x2ya0截直线xy20所得弦的长为4,则实数a的值为()A.2B.4C.6D.8答案B解析由圆的方程x2y22x2ya0可得,圆心为(1,1),半径r.圆心到直线xy20的距离为d.由r2d2()2得2a24,所以a4.2.圆x2y24上的点到直线xy20的距离的最大值为()A.2B.2C.D.0答案A解析圆心(0,0)到直线xy20的距离d,所求最大距离为2.3.直线l:y1k(x1)和圆x2y22y0的位置关系是()A.相离B.相切或相交C.相交D.相切答案C解析l过定点A(1,1),1212210,点A在圆上,直线x1过点A且为圆的切线,又l斜率存在,l与圆一定相交,故选C.4.已知圆C:(xa)2。
7、8 8. .6.26.2 直线与平面垂直直线与平面垂直 第一课时第一课时 直线与平面垂直的判定直线与平面垂直的判定 基础达标 一选择题 1.已知直线 m,n 是异面直线,则过直线 n 且与直线 m 垂直的平面 A.有且只有一个 B.至多有一。
8、第二课时第二课时 直线与平面垂直的性质直线与平面垂直的性质 基础达标 一选择题 1.若直线 a 与平面 不垂直,那么在平面 内与直线 a 垂直的直线 A.只有一条 B.有无数条 C.是平面内的所有直线 D.不存在 解析 当 a平面 时,在平。
9、2.2直线的方程2.2.1直线方程的概念与直线的斜率基础过关1.下列说法中,正确的是()A.直线的倾斜角为,则此直线的斜率为tanB.直线的斜率为tan,则此直线的倾斜角为C.若直线的倾斜角为,则sin0D.任意直线都有倾斜角,且90时,斜率为tan答案D解析对于A,当90时,直线的斜率不存在,故不正确;对于B,虽然直线的斜率为tan,但只有0180时,才是此直线的倾斜角,故不正确;对于C,当直线平行于x轴时,0,sin0,故C不正确,故选D.2.若A、B两点的横坐标相等,则直线AB的倾斜角和斜率分别是()A.45,1B.135,1C.90,不存在D.180,不存在答案C解析由于A、B两点的横坐标相等,所。
10、1.2.3空间中的垂直关系第1课时直线与平面垂直基础过关1.已知m,n表示两条不同直线,表示平面.下列说法正确的是()A.若m,n,则mnB.若m,n,则mnC.若m,mn,则nD.若m,mn,则n答案B解析方法一若m,n,则m,n可能平行、相交或异面,A错;若m,n,则mn,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m,mn,则n或n,C错;若m,mn,则n与可能相交,可能平行,也可能n,D错.方法二如图,在正方体ABCDABCD中,用平面ABCD表示.A项中,若m为AB,n为BC,满足m,n,但m与n是相交直线,故A错.B项中,m,n,满足mn,这是线面垂直的性质,故。
11、8 8. .5 5 空间直线平面的平行空间直线平面的平行 8 8. .5.15.1 直线与直线平行直线与直线平行 基础达标 一选择题 1.空间两条互相平行的直线指的是 A.在空间没有公共点的两条直线 B.分别在两个平面内的两条直线 C.在两。
12、8 8. .6 6 空间直线平面的垂直空间直线平面的垂直 8 8. .6.16.1 直线与直线垂直直线与直线垂直 基础达标 一选择题 1.若空间三条直线 a,b,c 满足 ab,bc,则直线 a 与 c A.一定平行 B.一定垂直 C.一定。