平行学案

第2课时平面与平面平行学习目标1理解平面与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语言准确描述平面与平面平行的判定定理、性质定理,并知道其地位和作用3能62.2平行关系第1课时直线与平面平行学习目标1理解直线与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语

平行学案Tag内容描述:

1、4.2平行四边形的性质(2),一位饱经苍桑的老人,经过一辈子的辛勤劳动,到晚年的时候,终于拥了一块平行四边形的土地,由于年迈体弱,他决定把这块土地平均分给他的四个孩子,他的三个儿子想出了三种方案,都认为自己是对的,你说他们分得对吗?,老二,老三,老大,生活万象,如图,四边形ABCD是平行四边形,猜一猜:,线段AD与BC、AB与CD长度有何关系?,量一量:,验证你的猜想是否正确.,合作探究,平行四边形的对边相等,证明命题:平行四边形的对边相等,已知:如图,四边形ABCD是平行四边形, 求证:ABCD,ADBC.,证明:连接AC. 四边形ABCD是平行四边。

2、2.2.2 第 2 课时 利用对角线的关系判定平行四边形 一、选择题1下列命题中,真命题有( )对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形是平行四边形A3 个 B2 个 C1 个 D0 个2如图 K141,在四边形 ABCD 中,对角线 AC 与 BD 相交于点 O,下列不能判定四边形ABCD 是平行四边形的是 ( )链 接 听 课 例 1归 纳 总 结图 K141AABDC,ADBC BABDC,ADBCCABDC,ADBC DOAOC,OBOD3在四边形 ABCD 中,对角线 AC,BD 相交于点 O,给出下列四个条件:ADBC;ADBC;OAOC;OBOD.从中任。

3、1课时作业(十三)2.2.2 第 1 课时 利用边的关系判定平行四边形 一、选择题1下列条件中不能判定四边形 ABCD 是平行四边形的是( )AABCD,ABCD BABCD,ADBCCABCD,ADBC DABCD,ADBC2在四边形 ABCD 中,ADBC,要判定四边形 ABCD 是平行四边形,还应满足( )AAC180 BBD180CAB180 DAD1803如图 K131,已知在四边形 ABCD 中,ABCD,ABCD,E 为 AB 上一点,过点 E作 EFBC,交 CD 于点 F,G 为 AD 上一点,H 为 BC 上一点,连接 CG,AH.若 GDBH,则图中的平行四边形有 ( )链 接 听 课 例 1归 纳 总 结图 K131A2 个 B3 个 C4 个 D6 个42018安徽在ABCD 。

4、1课时作业(十一)2.2.1 第 1 课时 平行四边形的边、角的性质 一、选择题1在ABCD 中,BA30,则C,D 的度数依次为 ( )链 接 听 课 例 2归 纳 总 结A85,95 B95,85C75,105 D无法确定22017农垦森在平行四边形 ABCD 中,A 的平分线把 BC 边分成长度是 3 和 4 的两部分,则平行四边形 ABCD 的周长是( )A22 B20C22 或 20 D1832017丽水如图 K111,在ABCD 中,连接 AC,ABCCAD45,AB2,则 BC 的长是 ( )链 接 听 课 例 2归 纳 总 结图 K111A. B2 C2 D42 24如图 K112,在ABCD 中,ACB25,现将ABCD 沿 EF 折叠,使点 C 与点 A重合,点 D 落在 G 。

5、1课时作业(十二)2.2.1 第 2 课时 平行四边形的对角线的性质 一、选择题1如图 K121,ABCD 的对角线 AC,BD 相交于点 O,则下列说法一定正确的是( )图 K121AAODO BAODO CAOCO DAOAB22017眉山如图 K122,EF 过ABCD 的对角线的交点 O,交 AD 于点 E,交 BC 于点 F.若ABCD 的周长为 18,OE1.5,则四边形 EFCD 的周长为 ( )链 接 听 课 例 1归 纳 总 结图 K122A14 B13 C12 D103如图 K123,在ABCD 中,已知ODA90,AC10 cm,BD6 cm,则 AD 的长为( )图 K123A4 cm B5 cm C6 cm D8 cm4如图 K124,在周长为 20 cm 的ABCD 中,ABAD,AC,BD 相交于点 O。

6、第2章 四边形,2.2 平行四边形,第2课时 利用对角线的关系 判定平行四边形,目标突破,总结反思,第2章 四边形,知识目标,2.2 平行四边形,知识目标,1结合平行四边形对角线的性质,从对角线互相平分的角度去判定平行四边形,并能进行有关的证明与计算 2通过求平行四边形两组对角的数量关系,归纳出“两组对角分别相等的四边形是平行四边形”这一判定方法,并能进行有关的证明和计算 3回顾总结平行四边形的判定定理,能选择合适的方法判定平行四边形,目标突破,目标一 理解并会应用“对角线互相平分的四边形是平行四边形”,2.2 平行四边形,例1 教材。

7、第2章 四边形,2.2 平行四边形,第1课时 利用边的关系判定平行四边形,目标突破,总结反思,第2章 四边形,知识目标,2.2 平行四边形,知识目标,1通过自学阅读、操作、猜想、讨论,能够得到“一组对边平行且相等的四边形是平行四边形”这一判定定理,并能初步应用 2在理解平行四边形性质的基础上,经过画图、猜想、推理,能够得到“两组对边分别相等的四边形是平行四边形”这一判定定理,并会初步应用,目标突破,目标一 理解并会用“一组对边平行且相等的四边形是平行四边形”,2.2 平行四边形,例1 教材例5针对训练 如图229,已知BEDF,ADFCBE,AFCE。

8、第2章 四边形,2.2 平行四边形,第2课时 平行四边形的对角线的性质,目标突破,总结反思,第2章 四边形,知识目标,2.2 平行四边形,知识目标,通过对平行四边形对角线的作图与测量,掌握平行四边形对角线互相平分的性质,目标突破,目标 掌握平行四边形对角线的性质并能计算或证明,2.2 平行四边形,例1 教材例3针对训练 如图226,已知ABCD的对角线AC,BD相交于点O,AC12,BD18,且AOB的周长l23,求AB的长,图226,2.2 平行四边形,2.2 平行四边形,【归纳总结】 平行四边形对角线性质的作用 (1)平行四边形的两条对角线将平行四边形分成四个小三角形,且有。

9、第2章 四边形,2.2 平行四边形,第1课时 平行四边形的边、角的性质,目标突破,总结反思,第2章 四边形,知识目标,2.2 平行四边形,知识目标,1观察实际生活中的平行四边形,归纳总结出平行四边形的定义 2根据定义,从平行四边形的图形中探究其对应边、角的性质并加以应用 3利用平行四边形的性质,得出“夹在两条平行线间的平行线段相等”这一推论并加以应用,目标突破,目标一 理解平行四边形的定义,例1 教材补充例题 如图221,在ABC中,点D,E,F分别在ABC的三边上,且DEBC,DFAC,EFAB,请指出图中所有的平行四边形,并说明理由,图221,2.2 平行四。

10、1.2.2空间中的平行关系第1课时平行直线、直线与平面平行基础过关1.能保证直线a与平面平行的条件是()A.a,b,abB.b,abC.b,c,acD.b,Aa,Ba,Cb,Db,且ACBD答案A解析由直线与平面平行的判定定理知A正确.2.下列命题中正确的是()A.若直线l上有无数个点不在平面内,则lB.若直线l与平面平行,则l与平面内的任意一条直线都平行C.如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行D.若直线l与平面平行,则l与平面没有公共点答案D解析A项中,若lA时,除A点所有的点均不在内;B项中,l时,中有无数条直线与l异面;C项中,另。

11、第第 2 2 课时课时 夹角问题夹角问题 学习目标 1.会用向量法求线线、线面、面面夹角.2.能正确区分向量夹角与所求线线角、线 面角、面面角的关系 知识点一 两个平面的夹角 平面 与平面 的夹角:平面 与平面 相交,形成四个二面角,我们把这四个二面角中不 大于 90 的二面角称为平面 与平面 的夹角 知识点二 空间角的向量法解法 角的分类 向量求法 范围 两条异面直 线所成的角 设两异面直线 。

12、 第 1 页(共 23 页) 平行四边形和特殊平行四边形培优题平行四边形和特殊平行四边形培优题 一解答题(共一解答题(共 12 小题)小题) 1如图,在矩形 ABCD 中,AB3cm,BC6cm点 P 从点 D 出发向点 A 运动,运动到点 A 即停止;同时,点 Q 从点 B 出发向点 C 运动,运动到点 C 即停止,点 P、Q 的速度都 是 1cm/s连接 PQ、AQ、CP设点 P、Q 运动的。

13、62.2平行关系第1课时直线与平面平行基础过关1直线l是平面外的一条直线,下列条件中可推出l的是()Al与内的一条直线不相交Bl与内的两条直线不相交Cl与内的无数条直线不相交Dl与内的任意一条直线不相交答案D解析由线面平行的定义可知D正确2下列命题中正确的个数是()ab,ba;a,bab;ab,ab;a,bab.A0 B1 C2 D3答案A解析中还可能有a,中a,b还可能异面,中还可能b,中还可能a和b相交、异面3有以下三个命题:一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;过直线外一点,有且只有一个平面和已知直线平行;如果直线l平面,那。

14、第2课时平面与平面平行基础过关1a,b,则a与b位置关系是()A平行 B异面C相交 D平行或异面或相交答案D解析如图(1),(2),(3)所示,a与b的关系分别是平行、异面或相交2下列说法中正确的是()A如果两个平面,只有一条公共直线a,就说平面,相交,并记作aB两平面,有一个公共点A,就说,相交于过A点的任意一条直线C两平面,有一个公共点A,就说,相交于A点,并记作AD两平面ABC与DBC相交于线段BC答案A解析B不正确,若A,则,相交于过A点的一条直线;同理C不正确;D不正确,两个平面相交,其交线为直线而非线段3平面内有不共线的三点到平面的距离。

15、平行四边形和特殊的平行四边形一、教学目标1.了解平行四边形、矩形、菱形、正方形的概念 2.掌握平行四边形、矩 形、菱形、正方形四者之间的关系.3.能灵活运用概念解决问题.二、课时安排:1 课时.三、教学重点:平行四边形、矩形、菱形、正方形的概念四、教学难点:灵活运用概念解决问题.五、教学过程(一)导入新课 平行四边形是随处可见的图形,如图 15-12 中的篱笆、道闸、衣帽架等,都具有平行四边形的形象.下面我们学习平行四边形和特殊的平行四边形.(二)讲授新课两组对边分别平行的四边形叫做平行四边形. 平行四边形是特殊的四边形。

16、2.1.3两条直线的平行与垂直第1课时两条直线的平行学习目标1.理解并掌握两条直线平行的条件.2.能根据已知条件判断两直线平行.3.会利用两直线平行求参数及直线方程.知识点两条直线平行的判定类型斜率存在斜率不存在前提条件12901290对应关系l1l2k1k2且b1b2l1l2两直线斜率都不存在图示一、两条直线平行的判定例1下列直线l1与直线l2平行的有_.(填序号)l1经过点A(1,1),B(2,3),l2经过点C(1,0),D(2,2);l1的斜率为2,l2经过点A(1,1),B(2,2);l1的倾斜角为60,l2经过点M(1,),N(2,2);l1经过点E(3,2),F(3,10),l2经过点P(5,2),Q(5,5).。

17、第2课时直线与平面平行学习目标1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.学会用图形语言、符号语言表示三种位置关系.3.掌握直线与平面平行的判定定理和性质定理,并能利用两个定理解决空间中的平行关系问题知识点一直线与平面的位置关系直线与平面的位置关系定义图形语言符号语言直线在平面内有无数个公共点a直线与平面相交有且只有一个公共点aA直线与平面平行没有公共点a知识点二直线与平面平行的判定直线与平面平行的判定定理文字语言符号表示图形表示如果不在一个平面内一条直线和平面内的一条直线平行,那么这。

18、第3课时平面与平面平行学习目标1.掌握平面与平面的位置关系,会判断平面与平面的位置关系.2.学会用图形语言、符号语言表示平面间的位置关系.3.掌握空间中面面平行的判定定理及性质定理,并能应用这两个定理解决问题知识点一平面与平面平行的判定平面平行的判定定理及推论判定定理推论文字语言如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,则这两个平面平行符号语言l,m,l,m,lmAac,bd,abA,a,b,c,d图形语言知识点二平面与平面平行的性质平面。

19、62.2平行关系第1课时直线与平面平行学习目标 1理解直线与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理、性质定理,并知道其地位和作用3能运用直线与平面平行的判定定理、性质定理证明一些空间线面关系的简单问题预习导引1直线与平面平行的定义ll2线面平行的判定定理、性质定理定理表示线面平行的判定定理线面平行的性质定理文字叙述平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行一条直线与一个平面平行,则过该直线的任一平面与此平面的交线与该直线平行符号。

20、第2课时平面与平面平行学习目标 1理解平面与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语言准确描述平面与平面平行的判定定理、性质定理,并知道其地位和作用3能运用平面与平面平行的判定定理、性质定理证明一些空间面面关系的简单问题知识链接1直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行2直线和平面平行的性质定理:一条直线与一个平面平行,则过该直线的任一平面与此平面的交线与该直线平行预习导引面面平行的判定定理、性质定理定理表示面面平行的判定定理面面。

【平行学案】相关PPT文档
【平行学案】相关DOC文档
第1课时 两条直线的平行 学案(含答案)
标签 > 平行学案[编号:75988]