6.2.3垂直关系第1课时直线与平面的垂直课时作业含答案

1.2.2空间中的平行关系 第1课时平行直线、直线与平面平行 基础过关 1.能保证直线a与平面平行的条件是() A.a,b,ab B.b,ab C.b,c,ac D.b,Aa,Ba,Cb,Db,且ACBD 答案A 解析由直线与平面平行的判定定理知A正确. 2.下列命题中正确的是() A.若直线l上有

6.2.3垂直关系第1课时直线与平面的垂直课时作业含答案Tag内容描述:

1、1.2.2空间中的平行关系第1课时平行直线、直线与平面平行基础过关1.能保证直线a与平面平行的条件是()A.a,b,abB.b,abC.b,c,acD.b,Aa,Ba,Cb,Db,且ACBD答案A解析由直线与平面平行的判定定理知A正确.2.下列命题中正确的是()A.若直线l上有无数个点不在平面内,则lB.若直线l与平面平行,则l与平面内的任意一条直线都平行C.如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行D.若直线l与平面平行,则l与平面没有公共点答案D解析A项中,若lA时,除A点所有的点均不在内;B项中,l时,中有无数条直线与l异面;C项中,另。

2、62.2平行关系第1课时直线与平面平行基础过关1直线l是平面外的一条直线,下列条件中可推出l的是()Al与内的一条直线不相交Bl与内的两条直线不相交Cl与内的无数条直线不相交Dl与内的任意一条直线不相交答案D解析由线面平行的定义可知D正确2下列命题中正确的个数是()ab,ba;a,bab;ab,ab;a,bab.A0 B1 C2 D3答案A解析中还可能有a,中a,b还可能异面,中还可能b,中还可能a和b相交、异面3有以下三个命题:一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;过直线外一点,有且只有一个平面和已知直线平行;如果直线l平面,那。

3、1.2.3空间中的垂直关系第1课时直线与平面垂直学习目标1.理解直线与平面垂直的定义及性质.2.掌握直线与平面垂直的判定定理及推论,并会利用定理及推论解决相关的问题知识点一直线与平面垂直的定义及性质1直线与直线垂直如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直2直线与平面垂直的定义及性质定义及符号表示图形语言及画法有关名称重要结论如果一条直线(AB)和一个平面()相交于点O,并且和这个平面内过交点(O)的任何直线都垂直我们就说这条直线和这个平面互相垂直,记作AB把直线AB画成和表示平。

4、第2课时平面与平面垂直基础过关1.空间四边形ABCD中,若ADBC,BDAD,那么有()A.平面ABC平面ADCB.平面ABC平面ADBC.平面ABC平面DBCD.平面ADC平面DBC答案D解析平面ADC平面DBC2.已知PA矩形ABCD所在的平面(如图).图中互相垂直的平面有()A.1对B.2对C.3对D.5对答案D解析DAAB,DAPA,ABPAA,DA平面PAB,同样BC平面PAB,又易知AB平面PAD,DC平面PAD.平面PAD平面ABCD,平面PAD平面PAB,平面PBC平面PAB,平面PAB平面ABCD,平面PDC平面PAD,共5对.3.设l是直线,是两个不同的平面()A.若l,l,则B.若l,l,则C.若,l,则lD.若,l,则l答案B解析设a,若直。

5、1.2.3空间中的垂直关系第1课时直线与平面垂直一、选择题1若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A平面OAB B平面OACC平面OBC D平面ABC答案C解析OAOB,OAOC且OBOCO,OA平面OBC.2直线a直线b,直线b平面,则a与的关系是()Aa BaCa Da或a答案D解析若a,b平面,可证得ab;若a,过a作平面,c,b平面,c,则bc,ac,于是ba.故答案为D.3已知空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A垂直且相交 B相交但不一定垂直C垂直但不相交 D不垂直也不相交答案C解析如图,取BD中点O,连接AO,CO,则BDAO,BDCO,AOOCO,BD平面AOC,B。

6、1.2.3空间中的垂直关系第1课时直线与平面垂直基础过关1.已知m,n表示两条不同直线,表示平面.下列说法正确的是()A.若m,n,则mnB.若m,n,则mnC.若m,mn,则nD.若m,mn,则n答案B解析方法一若m,n,则m,n可能平行、相交或异面,A错;若m,n,则mn,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m,mn,则n或n,C错;若m,mn,则n与可能相交,可能平行,也可能n,D错.方法二如图,在正方体ABCDABCD中,用平面ABCD表示.A项中,若m为AB,n为BC,满足m,n,但m与n是相交直线,故A错.B项中,m,n,满足mn,这是线面垂直的性质,故。

7、第2课时平面与平面垂直基础过关1空间四边形ABCD中,若ADBC,BDAD,那么有()A平面ABC平面ADCB平面ABC平面ADBC平面ABC平面DBCD平面ADC平面DBC答案D解析平面ADC平面DBC.2.已知PA矩形ABCD所在的平面(如图)图中互相垂直的平面有()A1对 B2对C3对 D5对答案D解析DAAB,DAPA,ABPAA,DA平面PAB.BC平面PAB.又易知AB平面PAD,DC平面PAD.平面PAD平面ABCD,平面PAD平面PAB,平面PBC平面PAB,平面PAB平面ABCD,平面PDC平面PAD,共5对3设平面平面,在平面内的一条直线a垂直于平面内的一条直线b,则()A直线a必垂直于平面B直线b必垂直于平面C直线a不一定垂。

8、62.3垂直关系第1课时直线与平面的垂直学习目标 1了解直线与平面垂直的定义,两异面直线垂直的定义2.理解并掌握直线与平面垂直的判定定理,并会应用之判断直线与平面垂直. 3.掌握并会应用直线与平面垂直的性质,理解平行与垂直之间的关系知识链接生活中处处都有直线和平面垂直的例子,如旗杆和地面、路灯与地面等等在判断线面平行时我们有判定定理,那么判断线面垂直又有什么好办法呢?预习导引1直线与平面垂直的概念如果直线l与平面内的任意一条直线都垂直,我们就说直线l与平面互相垂直,记作l直线l叫作平面的垂线;平面叫作直线l的垂面2。

标签 > 6.2.3垂直关系第1课时直线与平面的垂直课时作业含答案[编号:103052]