7.3特殊角的三角函数

1.2任意角的三角函数 1.2.1任意角的三角函数(一) 基础过关 1.若角的终边上有一点P(0,3),则下列式子无意义的是() A.tan B.sin C.cos D.都有意义 解析由三角函数的定义sin ,cos ,tan ,可知tan 无意义. 答案A 2.设角终边上一点P(4a,3a)(a0

7.3特殊角的三角函数Tag内容描述:

1、1.2任意角的三角函数1.2.1任意角的三角函数(一) 基础过关1.若角的终边上有一点P(0,3),则下列式子无意义的是()A.tan B.sin C.cos D.都有意义解析由三角函数的定义sin ,cos ,tan ,可知tan 无意义.答案A2.设角终边上一点P(4a,3a)(a0),则2sin cos 的值为()A. B.或C. D.与a有关解析a0,r5|a|5a,cos ,sin ,2sin cos .答案C3.已知点P(tan ,cos )在第三象限,则角的终边在第_象限.解析点P(tan ,cos )在第三象限,tan 0,cos 0.角在第二象限.答案二4.若60角的终边上有一点(4,a),则a的值是_.解析因为tan 60,所以a4tan 60&。

2、1.2.1 任意角的三角函数任意角的三角函数(一一) 基础过关 1cos 1 110 的值为( ) A1 2 B 3 2 C1 2 D 3 2 解析 cos 1 110 cos(3360 30 )cos 30 3 2 答案 B 2若角 的终边上有一点 P(0,3),则下列式子无意义的是( ) Atan Bsin Ccos D都有意义 解析 由三角函数的定义 sin y r,cos x r,。

3、1.2.1 任意角的三角函数任意角的三角函数(二二) 基础过关 1下列说法不正确的是( ) A当角 的终边在 x 轴上时,角 的正切线是一个点 B当角 的终边在 y 轴上时,角 的正切线不存在 C正弦线的始点随角的终边位置的变化而变化 D余弦线和正切线的始点都是原点 解析 根据三角函数线的概念,A,B,C 是正确的,只有 D 不正确,因为余弦线的始 点在原点而正切线的始点在单位圆与 x 轴正半轴的。

4、4.1任意角、弧度制及任意角的三角函数最新考纲考情考向分析1.了解任意角的概念和弧度制的概念2.能进行弧度与角度的互化3.理解任意角三角函数(正弦、余弦、正切)的定义.以理解任意角三角函数的概念、能进行弧度与角度的互化和扇形弧长、面积的计算为主,常与向量、三角恒等变换相结合,考查三角函数定义的应用及三角函数的化简与求值,考查分类讨论思想和数形结合思想的应用意识题型以选择题为主,低档难度.1.角的概念(1)角的分类(按旋转的方向)角(2)象限角象限角象限角的集合表示第一象限角|k360k36090,kZ第二象限角|k36090k360180,kZ第。

5、专题训练(五)盘点三角函数求值的方法技巧技巧一运用定义求锐角三角函数值1.2018柳州 如图5-ZT-1,在RtABC中,C=90,BC=4,AC=3,则sinB的值为()图5-ZT-1A.35 B.45 C.37 D.342.如图5-ZT-2,将ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tanC的值是()图5-ZT-2A.2 B.43 C.1 D.343.如图5-ZT-3,在RtABC中,C=90,AC=12,BC=5.(1)求AB的长;(2)求sinA,cosA,tanA,sinB,cosB,tanB的值.图5-ZT-34.如图5-ZT-4,在ABC中,AB=8,BC=6,SABC=12.试求 tanB的值.图5-ZT-4技巧二巧设参数求锐角三角函数值5.在RtABC中,C=90,若。

6、 1.2 任意角的三角函数任意角的三角函数 12.1 任意角的三角函数任意角的三角函数(一一) 学习目标 1.理解并掌握任意角的三角函数定义.2.借助任意角三角函数的定义理解并掌握 正弦、余弦、正切函数值在各象限内的符号.3.通过对任意角的三角函数定义的理解,掌握终 边相同的角的同一三角函数值相等 知识点一 任意角的三角函数 1单位圆 在直角坐标系中,我们称以原点 O 为圆心,以单位长度为半径的。

7、12.1 任意角的三角函数任意角的三角函数(二二) 学习目标 1.掌握正弦、余弦、正切函数的定义域.2.了解三角函数线的意义,能用三角函数 线表示一个角的正弦、余弦和正切.3.能利用三角函数线解决一些简单的三角函数问题 知识点一 三角函数的定义域 正弦函数 ysin x 的定义域是 R;余弦函数 ycos x 的定义域是 R;正切函数 ytan x 的定 义域是 x xR且xk 2,kZ 。

8、第2课时二倍角的三角函数的应用一、选择题1化简的结果为()Atan Btan 2 C1 D2答案B解析原式tan 2.2若cos 2,则sin4cos4等于()A. B. C. D.答案C解析sin4cos4(sin2cos2)22sin2cos21sin221(1cos22)1.3设sin,则sin 2等于()A B. C. D答案A解析sin 2cos2sin2121.4已知tan ,则等于()A. B C D.答案D解析tan .5.等于()A2 B. C4 D.答案C解析原式4.二、填空题6若为第三象限角,则_.答案0解析为第三象限角,cos 0,sin 0, 。

9、24.3.2 特殊角的三角函数值,第24章 解直角三角形,驶向胜利的彼岸,复习导入,探索新知,1.在RtABC中,A=30,C=90,如图,试求A的三个三角函数值。,解:设A所对的直角边为1,即BC=1,则AB=2,由勾股定理得: sin30= cos30= tan30=,探索新知,2.在RtABC中,C=90,A=B=45,如图,试求45角的三个三角函数值。,解:若设AC=BC=1,则AB= , 易得, sin45= cos45= tan45=1.,例1 求值:sin30tan30+cos30tan60.,解:原式= .,例2 在RtABC中,若sinA= .则cos 的值是多少?,解:,巩固练习,答案:1.sin60,cos45; sin45,cos45&#。

10、高中数学考点12 三角函数的基本概念、同角三角函数的基本关系与诱导公式1了解角、角度制与弧度制的概念,掌握弧度与角度的换算.2理解正弦函数、余弦函数、正切函数的定义.3理解同角三角函数的基本关系,掌握正弦、余弦、正切的诱导公式.一、角的有关概念1定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形2分类(1)按旋转方向不同分为正角、负角、零角(2)按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角终边相同的角,连同角在内,可构成一个集合3象限角与轴线角第一象限角的集合为;第二象限。

11、3.2二倍角的三角函数第1课时二倍角的三角函数一、选择题1已知是第三象限角,cos ,则sin 2等于()A B. C D.答案D解析由是第三象限角,且cos ,得sin ,所以sin 22sin cos 2,故选D.2已知sin ,则cos4sin4的值为()A B C. D.答案D解析cos4sin4(cos2sin2)(cos2sin2)cos 212sin21.3化简:等于()A1 B2 C. D1考点利用二倍角公式化简求值题点综合利用二倍角公式化简求值答案B解析2.故选B.4已知sin 2,则cos2等于()A. B. C. D.答案A解析因为cos2,所以cos2.故选A.5已知为锐角,且满足cos 2sin ,则等于(。

12、第2课时二倍角的三角函数的应用基础过关1.函数f(x)2cos2xsin 2x的最小值是()A.1 B.1 C.1 D.2解析f(x)1cos 2xsin 2x1sin,f(x)的最小值为1.答案B2.设acos 6sin 6,b,c,则a,b,c的大小关系为()A.abc B.cabC.bca D.acb解析asin 30cos 6cos 30sin 6sin 24,bsin 26,csin 25,所以acb.答案D3.函数f(x)sin2 xsin xcos x1的最小正周期是_,最小值是_.解析f(x)sin2xsin xcos x1sin 2x1sin 2xcos 2xsin,所以T。

13、3.2二倍角的三角函数第1课时二倍角的三角函数基础过关1.已知sin 2,则cos2()A. B. C. D.解析cos2.答案C2.已知tan 22,22,则tan 的值为()A. B. C. D.解析由题意得2,解得tan 或tan .又22,则,所以有tan .答案C3.设sin 2sin ,则tan 2的值是_.解析sin 2sin ,cos ,又,tan 2tan tan .答案4.若sin(),则cos(2)的值为_.解析cos(2)cos(2)cos2()12sin2()2sin2()1.答案5.若1,则的值为_.解析1,tan 。

14、第2课时二倍角的三角函数的应用学习目标1.进一步熟练掌握二倍角公式的特征及正用、逆用.2.掌握二倍角公式的变形即降幂公式的特征.3.会用二倍角公式进行三角函数的一些简单的恒等变换知识点降幂公式1sin2.2cos2.3tan2.1若cos ,则sin .()2cos2.()题型一应用半角公式求值例1已知sin ,3,求cos和tan .考点利用简单的三角恒等变换化简求值题点利用半角公式化简求值解sin ,且3,cos .,cos .tan 2.反思感悟利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解(2)明范围:由于半。

15、3.2二倍角的三角函数第1课时二倍角的三角函数学习目标1.会用两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式.2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用知识点二倍角公式1倍角公式sin 22sin cos .(S2)cos 2cos2sin212sin22cos21.(C2)tan 2.(T2)2二倍角公式的重要变形升幂公式1cos 22cos2,1cos 22sin2,1cos 2cos2,1cos 2sin2 .1sin 2sin cos .()2cos 4cos22sin22.()3对任意角,tan 2.()提示公式中所含各角应使三角函数有意义如及,上式均无意义.题型一给角求值例1求下列各式的值:(1)cos 72c。

16、1.2任意角的三角函数12.1任意角的三角函数第1课时任意角的三角函数学习目标1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号知识点一任意角的三角函数前提如图,设是一个任意角,P(x,y)是它的终边上任意一点定义正弦比值叫做的正弦,记作sin ,即sin 余弦比值叫做的余弦,记作cos ,即cos 正切比值(x0)叫做的正切,记作tan ,即tan 三角函数正弦、余弦、正切都是以角为自变量,以角的终边上点的坐标的比值为函数值的函。

17、九年级(下册),初中数学,7.3 特殊角的三角函数,作 者:左 猛(连云港市灌云县小伊中学),温故知新,如图,在RtABC中,C为直角,b,a,c,三角函数,正切:,余弦:,正弦:,7.3 特殊角的三角函数,想一想,你能分别说出30、45、60角的三角函数值吗?,1.利用计算器计算,2.利用三角尺的特殊角,量出各边的长度,用定义计算,还有其他方法吗?,7.3 特殊角的三角函数,1,2,sin30 cos30 tan30 ,如图,在Rt ACB中,C90,A30;,1. 请说出BC:AB:AC( ),2. 若设BC1,则AC( ) AB( ),3. 你能求出sin30,cos30,tan30的函数值吗?,小结:,2,试一试,7.3 特殊角的三角。

18、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第3课时 特殊角的三角函数值,1. 运用三角函数的知识,自主探索,推导出30、45、60角的三角函数值. (重点) 2. 熟记三个特殊锐角的三角函数值,并能准确地加 以运用. (难点),导入新课,复习引入,sin A =,cos A =,tan A =,1. 对于sin与tan,角度越大,函数值越 ;对于cos,角度越大,函数值越 .,2. 互余的两角之间的三角函数关系:若A+B=90,则sinA cosB,cosA sinB,tanA tanB = .,大,小,=,=,1,讲授新课,两块三角尺中有几个不同的锐角?分别求出这几个锐角。

19、7.2 正弦.余弦(2),复习回顾,三 角 函 数,余弦,正切,正弦,比较大小: sin22.5 _ sin30 cos45 _ cos67.5 sin30 _ cos45 sin22.5 _ cos67.5,练一练,例1: 如图,在RtABC中, C=90, AC=12,BC=5. 求: sinA、cosA、sinB、cosB的值.,例1: 如图,在RtABC中, C=90, BC=a, AC=b,AB=c 求: sinA、cosA、sinB、cosB的值.,A,B,C,c,a,你发现sinA与cosB 、 cosA与sinB的值 有什么关系吗?,b,三 角 函 数 之 间 的 关 系,已知为锐角:(1) sin = ,则cos=_,tan=_,练一练2,(2) cos= ,则sin=_,tan=_。

20、7.3特殊角的三角函数知识点 1特殊角的三角函数值1.2019淮安区模拟 sin30的值为()A.12 B.32 C.33 D.142.tan45的值为()A.12 B.1 C.22 D. 23.计算6tan45-2cos60的结果是()A.43 B.4 C.53 D.54.已知ABC是等边三角形,则 cos2A的值为()A.12 B.32 C.14 D.345.2017天水 在正方形网格中,ABC的位置如图7-3-1所示,则cosB的值为()图7-3-1A.12 B.22 C.32 D.336.计算:sin260+cos60-tan4。

【7.3特殊角的三角函数】相关PPT文档
【7.3特殊角的三角函数】相关DOC文档
标签 > 7.3特殊角的三角函数[编号:77968]