7.1.1数系的扩充和复数的概念ppt课件

章末复习,第五章 数系的扩充与复数的引入,学习目标,1.掌握复数的有关概念及复数相等的充要条件. 2.理解复数的几何意义. 3.掌握复数的相关运算.,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.复数的有关概念 (1)复数的概念:形如abi(a,bR)的数叫作复数,其中a,b分别是它的 和

7.1.1数系的扩充和复数的概念ppt课件Tag内容描述:

1、章末复习,第五章 数系的扩充与复数的引入,学习目标,1.掌握复数的有关概念及复数相等的充要条件. 2.理解复数的几何意义. 3.掌握复数的相关运算.,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.复数的有关概念 (1)复数的概念:形如abi(a,bR)的数叫作复数,其中a,b分别是它的 和 .若b0,则abi为实数,若 ,则abi为虚数,若 ,则abi为纯虚数. (2)复数相等:abicdi (a,b,c,dR). (3)共轭复数:abi与cdi共轭 (a,b,c,dR). (4)复平面:建立直角坐标系来表示复数的平面叫作复平面. 叫作实轴, 叫作虚轴.实轴上的点都表示 ;除了原点外,。

2、3.1.1 数系的扩充和复数的概念课后训练案巩固提升1.复数 z=(a2+b2)-(a+|a|)i(a,bR )为实数的充要条件是( )A.|a|=|b| B.a0,且 ab D.a0解析: 复数 z 为实数,则-(a+|a|) =0,即 a+|a|=0,因此 a0.答案: D2.设 a,bR,i 是虚数单位,则“ab=0”是“复数 a-bi 为纯虚数”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析: 由 ab=0,得 a=0,b0 或 a0,b=0 或 a=0,b=0,a-bi 不一定为纯虚数 ;若 a-bi 为纯虚数,则有a=0,且 b0,这时有 ab=0.综上,可知选 B.答案: B3.已知 mR,且(m 2-m)+(lg m)i 是纯虚数,则实数 m( )A.等于 0 。

3、第三章 数系的扩充与复数的引入3.1 数系的扩充和复数的概念1数系的扩充计数的需要自然数(正整数和零),负数,分数(分数集有理数集循环小数集),无理数(无理数集无限不循环小数集),虚数2复数的概念(1)复数的引入:为了解决这样的方程在实数系中无解的问题,我们引入一个新数,规定:,即使是方程的根;实数可以和数进行加法和乘法运算,且加法和乘法的运算律仍然成立在此规定下,实数与相加,结果记作;实数与相乘,结果记作;实数与实数和相乘的结果相加,结果记作由于加法和乘法的运算律仍然成立,从而这些运算的结果都可以写成。

4、第三章 数系的扩充与复数的引入3.1 数系的扩充和复数的概念1数系的扩充计数的需要自然数(正整数和零),负数,分数(分数集有理数集循环小数集),无理数(无理数集无限不循环小数集),虚数2复数的概念(1)复数的引入:为了解决这样的方程在实数系中无解的问题,我们引入一个新数,规定:,即使是方程的根;实数可以和数进行加法和乘法运算,且加法和乘法的运算律仍然成立在此规定下,实数与相加,结果记作;实数与相乘,结果记作;实数与实数和相乘的结果相加,结果记作由于加法和乘法的运算律仍然成立,从而这些运算的结果都可以写成。

5、3.1.1 数系的扩充和复数的概念,第三章 3.1 数系的扩充和复数的概念,学习目标 1.了解引进虚数单位i的必要性,了解数集的扩充过程. 2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念. 3.掌握复数代数形式的表示方法,理解复数相等的充要条件.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 复数的概念及代数表示,思考,答案,答案 设想引入新数i,使i是方程x210的根,即ii1,方程x210有解,同时得到一些新数.,为解决方程x22,数系从有理数扩充到实数;那么怎样解决方程x210在实数系中无根的问题呢?,梳理,(1)复数 定义。

6、第五章 数系的扩充与复数的引入,1 数系的扩充与复数的引入(二),学习目标,1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系. 2.掌握实轴、虚轴、模等概念. 3.掌握用向量的模来表示复数的模的方法.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 复平面,思考 实数可用数轴上的点来表示,类比一下,复数怎样来表示呢?,答案 任何一个复数zabi,都和一个有序实数对(a,b)一一对应,因此,复数集与平面直角坐标系中的点集之间可以一一对应.,梳理 当用直角坐标平面内的点来表示复数时,我们称这个直。

7、第五章 数系的扩充与复数的引入,1 数系的扩充与复数的引入(一),学习目标,1.了解引进虚数单位i的必要性,了解数集的扩充过程. 2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念. 3.掌握复数代数形式的表示方法,理解复数相等的充要条件.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 复数的概念及复数的表示,思考 为解决方程x22在有理数范围内无根的问题,数系从有理数扩充到实数;那么怎样解决方程x210在实数系中无根的问题呢?,答案 设想引入新数i,使i是方程x210的根,即ii1,方程x210有解,同时得到一些新数.,。

8、3.1 数系的扩充和复数的概念3.1.1 数系的扩充和复数的概念1.了解引进虚数单位 i 的必要性,了解数系的扩充过程. 2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念. 3.掌握复数代数形式的表示方法,理解复数相等的充要条件.1.复数的有关概念(1)复数定义:形如 abi(a,b R)的数叫做复数,其中 i 叫做虚数单位,满足 i21.表示方法:复数通常用字母 z 表示,即 zabi(a,bR) ,这一表示形式叫做复数的代数形式.a 叫做复数 z 的实部,b 叫做复数 z 的虚部.(2)复数集定义:全体复数所成的集合叫做复数集.表示:通常用大写字。

9、讲解人: 时间:2020.6.1 PEOPLES EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-2 3.1.1数系的扩充和复数的概念 第3章 数系的扩充与复数的引入 人 教 版 高 中 数 学 选 修 2 - 2 自然数系如何扩充到实数系? 自然数整数 有理数无理数 实数 课前导入 由于自然数扩充到实数系我们解决了类似,在有理数集中无解的问。

10、3.1.1 数系的扩充和复数的概念,第三章 3.1 数系的扩充和复数的概念,学习目标 1.了解引进虚数单位i的必要性,了解数集的扩充过程. 2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念. 3.掌握复数代数形式的表示方法,理解复数相等的充要条件.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 复数的概念及代数表示,思考,为解决方程x22,数系从有理数扩充到实数;那么怎样解决方程x210在实数系中无根的问题呢?,答案,答案 设想引入新数i,使i是方程x210的根,即ii1,方程x210有解,同时得到一些新数.,(1)复数 定义:把集。

11、 7.1 复数的概念复数的概念 7.1.1 数系的扩充和复数的概念数系的扩充和复数的概念 学习目标 1.了解引进虚数单位 i 的必要性, 了解数系的扩充过程.2.理解在数系的扩充中由 实数集扩展到复数集出现的一些基本概念.3.掌握复数代数形式的表示方法, 理解复数相等的 充要条件. 知识点一 复数的有关概念 1.复数 (1)定义:我们把形如 abi(a,bR)的数叫做复数,其中 i 叫做虚数单位,满足 i21. (2)表示方法:复数通常用字母 z 表示,即 zabi(a,bR),其中 a 叫做复数 z 的实部,b 叫做复数 z 的虚部. 2.复数集 (1)定义:全体复数所构成的集合叫做。

12、7.17.1 复数的概念复数的概念 7 7. .1.11.1 数系的扩充和复数的概念数系的扩充和复数的概念 1设 a,bR,则a0是复数 abi 是纯虚数的 A充分不必要条件 B必要不充分条件 C充要条件 D既不充分又不必要条件 答案 B 。

13、7.17.1 复数的概念复数的概念 7 7. .1.11.1 数系的扩充和复数的概念数系的扩充和复数的概念 基础达标 一选择题 1.若复数 za22aa2a2iaR是纯虚数,则 A.a0 或 a2 B.a0 C.a1 且 a2 D.a1 或。

14、7.1.1 数系的扩充和复数的概念数系的扩充和复数的概念 合格基础练合格基础练 一选择题一选择题 1下列命题: 1若 abi0,则 ab0; 2xyi22ixy2; 3若 yR,且y21y1i0,则 y1. 其中正确命题的个数为 A0 个 。

15、7.1.1 数系的扩充和复数的概念 1了解数系的扩充过程 2理解复数的基本概念以及复数相等的充要条件 3了解复数的代数表示法 学习目标 问题1 方程2x23x10.试求方程的整数解方程的实数解 问题2 方程x210在实数范围内有解吗 提示2。

【7.1.1数系的扩充和复数的概】相关PPT文档
【7.1.1数系的扩充和复数的概】相关DOC文档
标签 > 7.1.1数系的扩充和复数的概念ppt课件[编号:111558]