7.1.1数系的扩充和复数的概念 课后作业含答案

3.1.1 数系的扩充和复数的概念课后训练案巩固提升1.复数 z=(a2+b2)-(a+|a|)i(a,bR )为实数的充要条件是( )A.|a|=|b| B.a0,且 ab D.a0解析: 复数 z 为实数,则-(a+|a|) =0,即 a+|a|=0,因此 a0.答案: D2.设 a,bR,i

7.1.1数系的扩充和复数的概念 课后作业含答案Tag内容描述:

1、3.1.1 数系的扩充和复数的概念课后训练案巩固提升1.复数 z=(a2+b2)-(a+|a|)i(a,bR )为实数的充要条件是( )A.|a|=|b| B.a0,且 ab D.a0解析: 复数 z 为实数,则-(a+|a|) =0,即 a+|a|=0,因此 a0.答案: D2.设 a,bR,i 是虚数单位,则“ab=0”是“复数 a-bi 为纯虚数”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析: 由 ab=0,得 a=0,b0 或 a0,b=0 或 a=0,b=0,a-bi 不一定为纯虚数 ;若 a-bi 为纯虚数,则有a=0,且 b0,这时有 ab=0.综上,可知选 B.答案: B3.已知 mR,且(m 2-m)+(lg m)i 是纯虚数,则实数 m( )A.等于 0 。

2、 7.1 复数的概念复数的概念 7.1.1 数系的扩充和复数的概念数系的扩充和复数的概念 学习目标 1.了解引进虚数单位 i 的必要性, 了解数系的扩充过程.2.理解在数系的扩充中由 实数集扩展到复数集出现的一些基本概念.3.掌握复数代数形式的表示方法, 理解复数相等的 充要条件. 知识点一 复数的有关概念 1.复数 (1)定义:我们把形如 abi(a,bR)的数叫做复数,其中 i 叫做虚数单位,满足 i21. (2)表示方法:复数通常用字母 z 表示,即 zabi(a,bR),其中 a 叫做复数 z 的实部,b 叫做复数 z 的虚部. 2.复数集 (1)定义:全体复数所构成的集合叫做。

3、7.17.1 复数的概念复数的概念 7 7. .1.11.1 数系的扩充和复数的概念数系的扩充和复数的概念 1设 a,bR,则a0是复数 abi 是纯虚数的 A充分不必要条件 B必要不充分条件 C充要条件 D既不充分又不必要条件 答案 B 。

4、7.1.1 数系的扩充和复数的概念数系的扩充和复数的概念 合格基础练合格基础练 一选择题一选择题 1下列命题: 1若 abi0,则 ab0; 2xyi22ixy2; 3若 yR,且y21y1i0,则 y1. 其中正确命题的个数为 A0 个 。

5、7.17.1 复数的概念复数的概念 7 7. .1.11.1 数系的扩充和复数的概念数系的扩充和复数的概念 基础达标 一选择题 1.若复数 za22aa2a2iaR是纯虚数,则 A.a0 或 a2 B.a0 C.a1 且 a2 D.a1 或。

标签 > 7.1.1数系的扩充和复数的概念 课后作业含答案[编号:137150]