4简单线性规划 4.1二元一次不等式(组)与平面区域 第1课时二元一次不等式与平面区域 一、选择题 1下列选项中与点(1,2)位于直线2xy10的同一侧的是() A(1,1) B(0,1) C(1,0) D(1,0) 考点二元一次不等式(组) 题点用二元一次不等式(组)表示平面区域 答案D 解析21
5.3第1课时诱导公式一课时对点练含答案Tag内容描述:
1、4简单线性规划4.1二元一次不等式(组)与平面区域第1课时二元一次不等式与平面区域一、选择题1下列选项中与点(1,2)位于直线2xy10的同一侧的是()A(1,1) B(0,1) C(1,0) D(1,0)考点二元一次不等式(组)题点用二元一次不等式(组)表示平面区域答案D解析212110,点(1,2)位于2xy10表示的平面区域内,而四个点(1,1),(0,1),(1,0),(1,0)中只有(1,0)满足2xy10.2设点P(x,y),其中x,yN,满足xy3的点P的个数为()A10 B9 C3 D无数个考点二元一次不等式(组)题点用二元一次不等式(组)表示平面区域答案A解析作的平面区域如图所示,符合要求的点P。
2、4.2.2 等差数列的前等差数列的前 n 项和公式项和公式 第第 1 课时课时 等差数列前等差数列前 n 项和公式的推导及简单应用项和公式的推导及简单应用 1已知等差数列an的前 n 项和为 Sn,若 2a6a86,则 S7等于( ) A49 B42 C35 D28 答案 B 解析 2a6a8a46,S77 2(a1a7)7a442. 2在等差数列an中,已知 a110,d2,Sn580,则 。
3、第二节第二节 弹力弹力 第第 1 1 课时课时 弹力弹力 考点一 形变和弹力 1.2020 黑龙江伊春二中高一检测图 1 是力学中的两个实验装置, 由图可知这两个实验共同的物理思想方法 是 图 1 A.放大的思想方法 B.极限的思想方法 C。
4、4.34.3 等比数列等比数列 4 4. .3.13.1 等比数列的概念等比数列的概念 第第 1 1 课时课时 等比数列的概念及通项公式等比数列的概念及通项公式 1在数列an中,若 an13an,a12,则 a4为( ) A108 B54 C36 D18 答案 B 解析 因为 an13an, 所以数列an是公比为 3 的等比数列, 则 a433a154. 2(多选)在等比数列an中,a11 8。
5、4.24.2 等差数列等差数列 4 4. .2.12.1 等差数列的概念等差数列的概念 第第 1 1 课时课时 等差数列的概念及通项公式等差数列的概念及通项公式 1设数列an是等差数列,若 a24,a46,则 an等于( ) An B2n C2n1 Dn2 答案 D 解析 a4a22d642. d1.a1a2d3.an3(n1)1n2. 2在等差数列an中,已知 a3a810,则 3a5a7等。
6、4.3.2 等比数列的前等比数列的前 n 项和公式项和公式 第第 1 课时课时 等比数列前等比数列前 n 项和公式项和公式 1在等比数列an中,a12,a21,则 S100等于( ) A42100 B42100 C42 98 D42100 答案 C 解析 qa2 a1 1 2. S100a11q 100 1q 2 1 1 2 100 11 2 4(12 100)4298. 2设等比数列a。
7、4.14.1 数列的概念数列的概念 第第 1 1 课时课时 数列的概念及通项公式数列的概念及通项公式 1(多选)下列说法正确的是( ) A数列可以用图象来表示 B数列的通项公式不唯一 C数列中的项不能相等 D数列可以用一群孤立的点表示 答案 ABD 解析 数列中的项可以相等,如常数列,故选项 C 中说法不正确 2数列1,3,7,15,的一个通项公式可以是( ) Aan(1)n (2n1),nN。
8、22等差数列的前n项和第1课时等差数列的前n项和公式一、选择题1已知数列an中,a11,anan1(n2,nN),则数列an的前9项和等于()A27 B. C45 D9答案A解析由已知数列an是以1为首项,以为公差的等差数列,S99191827.2等差数列an的前n项和为Sn,且S36,a34,则公差d等于()A1 B. C2 D3答案C解析设an首项为a1,公差为d,则S33a1d3a13d6,a3a12d4,a10,d2.3记等差数列an的前n项和为Sn,若a1,S420,则S6等于()A16 B24 C36 D48答案D解析S426d20,d3.故S6315d48.4在等差数列an和bn中,a125,b175,a100b100100,则数列anbn的前100项的和为()A10 000 B8。
9、32等比数列的前n项和第1课时等比数列前n项和公式一、选择题1等比数列an中,a12,a21,则S100等于()A42100 B42100C4298 D42100答案C解析q.S1004(12100)4298.2等比数列an中,an2n,则它的前n项和Sn等于()A2n1 B2n2C2n11 D2n12答案D解析an2n,a12,q2,Sn2n12.3在等比数列an中,已知a13,an48,Sn93,则n的值为()A4 B5 C6 D7答案B解析显然q1,由Sn,得93,解得q2.由ana1qn1,得4832n1,解得n5.4设数列(1)n的前n项和为Sn,则Sn等于()A. B.C. D.答案D解析Sn.5等比数列an的前n项和为Sn,已知S5。
10、5.65.6 函数函数 y yA Asinsin xx 第第 1 1 课时课时 函数函数 y yA Asinsin xx 的图象的图象 一一 课时对点练课时对点练 1为了得到函数 ysin2x6的图象,可以将函数 ysin2x3的图象 A向。
11、5.5.25.5.2 简单的三角恒等变换简单的三角恒等变换 第第 1 1 课时课时 简单的三角恒等变换简单的三角恒等变换 一一 课时对点练课时对点练 1下列各式与 tan 相等的是 A. 1cos 21cos 2 B.sin 1cos C.。
12、5.75.7 三角函数的应用三角函数的应用 第第 1 1 课时课时 三角函数的应用三角函数的应用 一一 课时对点练课时对点练 1简谐运动 y4sin5x3的相位与初相分别是 A5x3,3 B5x3,4 C5x3,3 D4,3 答案 C 解析。
13、2等差数列21等差数列第1课时等差数列的概念及通项公式一、选择题1若数列an满足3an13an1,则数列an是()A公差为1的等差数列B公差为的等差数列C公差为的等差数列D不是等差数列答案B解析由3an13an1,得3an13an1,即an1an.所以数列an是公差为的等差数列2已知数列an是等差数列,a22,a58,则公差d的值为()A. B C2 D2答案C解析设an的首项为a1,公差为d,根据题意得解得d2.3在数列an中,a12,2an12an1,则a101的值为()A52 B51 C50 D49答案A解析因为2an12an1,a12,所以数列an是首项a12,公差d的等差数列,所以a101a1100d210052.4已知在等差数列an中。
14、3等比数列31等比数列第1课时等比数列的概念及通项公式一、选择题12和2的等比中项是()A1 B1 C1 D2答案C解析设2和2的等比中项为G,则G2(2)(2)1,G1.2有下列四个说法:等比数列中的某一项可以为0;等比数列中公比的取值范围是(,);若一个常数列是等比数列,则这个常数列的公比为1;若b2ac,则a,b,c成等比数列其中正确说法的个数为()A0 B1 C2 D3答案B解析等比数列中公比不能取0,且各项均不可为0,所以只有正确3在等比数列an中,a18,a464,则a3等于()A16 B16或16C32 D32或32答案C解析由a4a1q3,得q38,即q2,所以a332.4公比为2的等比数列a。
15、2.2.3等差数列的前n项和第1课时公式推导及简单应用一、填空题1若数列an的前n项和Snn21,则a4_.考点an与Sn关系题点由Sn公式求an答案7解析a4S4S3(421)(321)7.2在等差数列an和bn中,a125,b175,a100b100100,则数列anbn的前100项的和为_考点等差数列前n项和题点求等差数列的前n项和答案10 000解析由已知得anbn为等差数列,故其前100项的和为S10050(2575100)10 000.3在20与40之间插入8个数,使这10个数成等差数列,则这10个数的和为_考点等差数列前n项和题点求等差数列的前n项和答案100解析S10100.4在等差数列an中,若a2a88,则该数列的前9项。
16、5.55.5 三角恒等变换三角恒等变换 5 5. .5.15.1 两角和与差的正弦两角和与差的正弦余弦和正切公式余弦和正切公式 第第 1 1 课时课时 两角差的余弦公式两角差的余弦公式 课时对点练课时对点练 1下列各式化简错误的是 Acos。
17、2.1数列第1课时数列的概念与通项公式一、选择题1已知数列an的通项公式为an,nN*,则该数列的前4项依次为()A1,0,1,0 B0,1,0,1C.,0,0 D2,0,2,0答案A解析当n分别等于1,2,3,4时,a11,a20,a31,a40.2已知数列an的通项公式为ann2n50,nN*,则8是该数列的()A第5项 B第6项C第7项 D非任何一项答案C解析解n2n508,得n7或n6(舍去)3数列1,3,6,10,的一个通项公式是()Aann2n1 BanCan Dann21答案C解析令n1,2,3,4,代入A,B,C,D检验,即可排除A,B,D,故选C.4数列,的第10项是()A. B. C. D.答案C解析由数列的前4项可知,数列的一个通项公式为an,n。
18、第第 3 3 课时课时 公式的综合应用公式的综合应用 课时对点练课时对点练 1sin 75 cos 195 的值为 A1 B0 C.22 D1 答案 B 解析 sin 75 cos 195 sin90 15 cos180 15 cos 15。
19、第第 2 2 课时课时 诱导公式诱导公式 二二 课时对点练课时对点练 1已知 sin 25.3 a,则 cos 64.7 等于 Aa Ba Ca2 D. 1a2 答案 A 解析 cos 64.7 cos90 25.3 sin 25.3 a.。
20、5.35.3 诱导公式诱导公式 第第 1 1 课时课时 诱导公式诱导公式 一一 课时对点练课时对点练 1sin 1 290 等于 A32 B12 C.12 D.32 答案 B 解析 sin 1 290 sin3360 210 sin 210。