2.2.2等差数列的性质课时对点练含答案

4.2.2 等差数列的前等差数列的前 n 项和公式项和公式 第第 1 课时课时 等差数列前等差数列前 n 项和公式的推导及简单应用项和公式的推导及简单应用 1已知等差数列an的前 n 项和为 Sn,若 2a6a86,则 S7等于( ) A49 B42 C35 D28 答案 B 解析 2a6a8a46

2.2.2等差数列的性质课时对点练含答案Tag内容描述:

1、4.2.2 等差数列的前等差数列的前 n 项和公式项和公式 第第 1 课时课时 等差数列前等差数列前 n 项和公式的推导及简单应用项和公式的推导及简单应用 1已知等差数列an的前 n 项和为 Sn,若 2a6a86,则 S7等于( ) A49 B42 C35 D28 答案 B 解析 2a6a8a46,S77 2(a1a7)7a442. 2在等差数列an中,已知 a110,d2,Sn580,则 。

2、4.24.2 等差数列等差数列 4 4. .2.12.1 等差数列的概念等差数列的概念 第第 1 1 课时课时 等差数列的概念及通项公式等差数列的概念及通项公式 1设数列an是等差数列,若 a24,a46,则 an等于( ) An B2n C2n1 Dn2 答案 D 解析 a4a22d642. d1.a1a2d3.an3(n1)1n2. 2在等差数列an中,已知 a3a810,则 3a5a7等。

3、第第 2 课时课时 等差数列前等差数列前 n 项和的性质及应用项和的性质及应用 1在等差数列an中,a11,其前 n 项和为 Sn,若S8 8 S6 62,则 S10 等于( ) A10 B100 C110 D120 答案 B 解析 an是等差数列,a11, Sn n 也是等差数列且首项为S1 11. 又S8 8 S6 6 2, Sn n 的公差是 1, S10 101(101)110。

4、第第 2 课时课时 等差数列的性质等差数列的性质 1 已知等差数列an的公差为 d(d0), 且 a3a6a10a1332, 若 am8, 则 m 的值为( ) A12 B8 C6 D4 答案 B 解析 由等差数列的性质,得 a3a6a10a13(a3a13)(a6a10) 2a82a84a832, a88,又 d0,m8. 2已知数列an,bn为等差数列,且公差分别为 d12,d21,则数列。

5、2.2.3等差数列的前n项和第1课时公式推导及简单应用一、填空题1若数列an的前n项和Snn21,则a4_.考点an与Sn关系题点由Sn公式求an答案7解析a4S4S3(421)(321)7.2在等差数列an和bn中,a125,b175,a100b100100,则数列anbn的前100项的和为_考点等差数列前n项和题点求等差数列的前n项和答案10 000解析由已知得anbn为等差数列,故其前100项的和为S10050(2575100)10 000.3在20与40之间插入8个数,使这10个数成等差数列,则这10个数的和为_考点等差数列前n项和题点求等差数列的前n项和答案100解析S10100.4在等差数列an中,若a2a88,则该数列的前9项。

6、22等差数列的前n项和第1课时等差数列的前n项和公式一、选择题1已知数列an中,a11,anan1(n2,nN),则数列an的前9项和等于()A27 B. C45 D9答案A解析由已知数列an是以1为首项,以为公差的等差数列,S99191827.2等差数列an的前n项和为Sn,且S36,a34,则公差d等于()A1 B. C2 D3答案C解析设an首项为a1,公差为d,则S33a1d3a13d6,a3a12d4,a10,d2.3记等差数列an的前n项和为Sn,若a1,S420,则S6等于()A16 B24 C36 D48答案D解析S426d20,d3.故S6315d48.4在等差数列an和bn中,a125,b175,a100b100100,则数列anbn的前100项的和为()A10 000 B8。

7、2.2等差数列第1课时等差数列的概念及通项公式一、选择题1设数列an(nN*)是公差为d的等差数列,若a24,a46,则d等于()A4 B3 C2 D1答案D解析a4a22d642.d1.2已知等差数列5,2,1,则该数列的第20项为()A52 B62 C62 D52答案A解析公差d2(5)3,a20a1(201)d519352.3在数列an中,a12,2an12an1,则a101的值为()A52 B51 C50 D49答案A解析因为2an12an1,a12,所以数列an是首项a12,公差d的等差数列,所以a101a1100d210052.4若5,x,y,z,21成等差数列,则xyz的值为()A26 B29 C39 D52答案C解析5,x,y,z,21成等差数列,y既是5。

8、第4课时等差数列前n项和的性质学习目标1.会利用等差数列性质简化求和运算.2.会利用等差数列前n项和的函数特征求最值知识点一等差数列an的前n项和Sn的性质性质1等差数列中依次k项之和Sk,S2kSk,S3kS2k,组成公差为k2d的等差数列若等差数列的项数为2n(nN*),则S2nn(anan1),S偶S奇nd,(S奇0);性质2若等差数列的项数为2n1(nN*),则S2n1(2n1)an(an是数列的中间项),S奇S偶an,(S奇0)知识点二等差数列an的前n项和公式与函数的关系1将公式Snna1变形,得Snn2n.若令A,a1B,则上式可以写成SnAn2Bn,(1)等差数列前n项和Sn不一定是关于n的二次函数。

9、2等差数列21等差数列第1课时等差数列的概念及通项公式一、选择题1若数列an满足3an13an1,则数列an是()A公差为1的等差数列B公差为的等差数列C公差为的等差数列D不是等差数列答案B解析由3an13an1,得3an13an1,即an1an.所以数列an是公差为的等差数列2已知数列an是等差数列,a22,a58,则公差d的值为()A. B C2 D2答案C解析设an的首项为a1,公差为d,根据题意得解得d2.3在数列an中,a12,2an12an1,则a101的值为()A52 B51 C50 D49答案A解析因为2an12an1,a12,所以数列an是首项a12,公差d的等差数列,所以a101a1100d210052.4已知在等差数列an中。

10、第2课时等差数列前n项和的性质一、选择题1已知数列an满足an262n,则使其前n项和Sn取最大值时n的值为()A11或12 B12C13 D12或13答案D解析an262n,an1an2,数列an为等差数列,且a124,d2,Sn24n(2)n225n2.nN,当n12或13时,Sn最大2等差数列an中,首项a10,公差d0,d0,C中曲线满足3数列an为等差数列,它的前n项和为Sn,若Sn(n1)2,则的值是()A2 B1 C0 D1答案B解析等差数列前n项和Sn的形式为Snan2bn,(n1)2n22n1an2。

11、第3课时等差数列前n项和公式一、选择题1在20与40之间插入8个数,使这10个数成等差数列,则这10个数的和为()A200 B100 C90 D70答案B解析S10100.2在等差数列an中,若a2a88,则该数列的前9项和S9等于()A18 B27 C36 D45答案C解析S9(a1a9)(a2a8)36.3已知数列an中,a11,anan1(n2,nN*),则数列an的前9项和等于()A27 B. C45 D9答案A解析由已知数列an是以1为首项,以为公差的等差数列,S99191827.4在等差数列an和bn中,a125,b175,a100b100100,则数列anbn的前100项的和为()A10 000 B8 000C9 000 D11 000答案A解析由已知得anbn为等差数列,故其。

12、第4课时等差数列前n项和的性质一、选择题1已知数列an满足an262n,则使其前n项和Sn取最大值的n的值为()A11或12 B12C13 D12或13答案D解析an262n,an1an2,数列an为等差数列又a124,d2,Sn24n(2)n225n2.nN*,当n12或13时,Sn最大2等差数列an中,a1a2a324,a18a19a2078,那么此数列前20项的和为()A160 B180 C200 D220答案B解析由a1a2a33a224,得a28,由a18a19a203a1978,得a1926,于是S2010(a1a20)10(a2a19)10(826)180.3在等差数列an中,Sn是其前n项和,且S2 011S2 016,SkS2 008,则正整数k为()A2 017 B2 0。

13、第2课时等差数列的性质一、选择题1在等差数列an中,a2a46,则a1a2a3a4a5等于()A30 B15 C5 D10答案B解析在等差数列an中,a2a46,a33,a1a2a3a4a55a315.故选B.2设数列an,bn都是等差数列,且a125,b175,a2b2100,则a37b37等于()A0 B37 C100 D37答案C解析a1b1100a2b2,anbn是常数列,a37b37100.3等差数列an中,若a3a4a5a6a7450,则a2a8的值等于()A45 B75 C180 D300答案C解析a3a4a5a6a7(a3a7)(a4a6)a55a5450,a590.a2a82a5180.4已知等差数列an的公差为d(d0),且a3a6a10a1332,若am8,则m的值为(。

14、第2课时等差数列的性质一、选择题1已知数列an为等差数列,a36,a918,则公差d为()A1 B3 C2 D4答案C解析因为数列an为等差数列,所以a9a36d,即1866d,所以d2.2在等差数列an中,若a3a4a5a6a7450,则a2a8的值等于()A45 B75 C180 D300答案C解析a3a4a5a6a7(a3a7)(a4a6)a55a5450,a590.a2a82a5180.3已知数列是等差数列,且a32,a1530,则a9等于()A12 B24 C16 D32答案A解析令bn,由题意可知b3,b152,则等差数列bn的公差d,则b9b3(93)d,所以a99b912,故选A.4已知数列an为等差数列且a1a7a134,则tan(a2a12)的值为()A. B C D答。

【2.2.2等差数列的性质课时对】相关DOC文档
标签 > 2.2.2等差数列的性质课时对点练含答案[编号:110134]