1、22等差数列的前n项和第1课时等差数列的前n项和公式一、选择题1已知数列an中,a11,anan1(n2,nN),则数列an的前9项和等于()A27 B. C45 D9答案A解析由已知数列an是以1为首项,以为公差的等差数列,S99191827.2等差数列an的前n项和为Sn,且S36,a34,则公差d等于()A1 B. C2 D3答案C解析设an首项为a1,公差为d,则S33a1d3a13d6,a3a12d4,a10,d2.3记等差数列an的前n项和为Sn,若a1,S420,则S6等于()A16 B24 C36 D48答案D解析S426d20,d3.故S6315d48.4在等差数列an和bn
2、中,a125,b175,a100b100100,则数列anbn的前100项的和为()A10 000 B8 000 C9 000 D11 000答案A解析由已知得anbn为等差数列,故其前100项的和为S10050(2575100)10 000.5在等差数列an中,若a2a88,则该数列的前9项和S9等于()A18 B27 C36 D45答案C解析S9(a1a9)(a2a8)36.6已知数列an为等差数列,且3(a3a5)2(a7a10a13)24,那么数列an的前13项和为()A26 B13 C52 D152答案A解析由3(a3a5)2(a7a10a13)24,得6a46a1024,a4a10
3、a1a134,S1326.7在等差数列an中,aa2a3a89,且an0,则S10等于()A9 B11C13 D15答案D解析由aa2a3a89,得(a3a8)29,an0,所以anan12(n2)所以数列an是以3为首项,2为公差的等差数列(nN)(2)解由(1)知,an32(n1)2n1(nN)14数列an的前n项和Snn22n,若mn5,则aman_.答案10解析amSmSm1m22m(m1)22(m1)2m1,同理an2n1,所以aman(2m1)(2n1)2(mn)10.15已知公差大于零的等差数列an的前n项和为Sn,且满足:a3a4117,a2a522.(1)求数列an的通项公式an;(2)若数列bn是等差数列,且bn,求非零常数c.解(1)设等差数列an的公差为d,且d0.a3a4a2a522,又a3a4117,a3,a4是方程x222x1170的两个根又公差d0,a3a4,a39,a413.an4n3(nN)(2)由(1)知,Snn142n2n,bn.b1,b2,b3.bn是等差数列,2b2b1b3,2c2c0,c (c0舍去)经检验,c符合题意,c.