3.8 弧长及扇形的面积(2)扇形面积公式为 S= = lR(n 为扇形所在圆心角的度数,R 为半径,l 为扇形弧长)3602n11. 挂钟分针长 10cm,经过 h,它扫过的面积为(A).31A. cm2 B. cm2 C. cm2 D. cm231050309502.如图所示,三个小正方形的边长
24.4弧长及扇形的面积Tag内容描述:
1、3.8 弧长及扇形的面积(2)扇形面积公式为 S= = lR(n 为扇形所在圆心角的度数,R 为半径,l 为扇形弧长)3602n11. 挂钟分针长 10cm,经过 h,它扫过的面积为(A).31A. cm2 B. cm2 C. cm2 D. cm231050309502.如图所示,三个小正方形的边长都为 1,则图中阴影部分面积的和是(B).A. B. C. D. 4816(第 2 题) (第 3 题) (第 4 题)3.如图所示,在矩形 ABCD 中,AB=4,AD=2,分别以点 A,C 为圆心,AD,CB 为半径画弧,交 AB 于点 E,交 CD 于点 F,则图中阴影部分的面积是(C).A.4-2 B.8- C.8-2 D.8-44.如图所示,已知在ABC 中,AB=AC=5,CB=8,分别。
2、3.8 弧长及扇形的面积(1)弧长计算公式为 l= (n 表示弧的度数,R 为半径),公式可变形为 n= 或180n Rl180R= nl1801.已知一个扇形的半径为 12,圆心角为 150,则此扇形的弧长是(D).A.5 B.6 C.8 D.10(第 2 题)2.如图所示, “凸轮”的外围是由以等边三角形的顶点为圆心,正三角形的边长为半径的三段等弧组成.若等边三角形的边长为 a,则“凸轮”的周长是(A).A.a B.2a C. a D. a21313.如图所示,将边长为 2 的正方形 ABCD 沿直线 l 向右翻转(不滑动),当正方形连续翻转 10 次后,正方形的中心 O 经过的路线长是(D).A.10 B.20 C.5 D.102(第 3 。
3、专题26 与弧长、扇形面积有关的问题 专题知识回顾 1.扇形弧长面积公式(1)弧长的计算公式(2)扇形面积计算公式2.弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。(2)弓形的周长弦长弧长(3)弓形的面积当弓形所含的弧是劣弧时,如图1所示, 当弓形所含的弧是优弧时,如图2所示,当弓形所含的弧是半圆时,如图3所示,3圆柱侧面积体积公式(1)圆柱的侧面积公式S侧=2rh(2)圆柱的表面积公式:S表=S底2+S侧=2r2+2r h4.圆锥侧面积体积公式(1)圆锥侧面积计算公式从右图中可以看出,圆锥的母线。
4、专题26 与弧长、扇形面积有关的问题 专题知识回顾 1.扇形弧长面积公式(1)弧长的计算公式(2)扇形面积计算公式2.弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。(2)弓形的周长弦长弧长(3)弓形的面积当弓形所含的弧是劣弧时,如图1所示, 当弓形所含的弧是优弧时,如图2所示,当弓形所含的弧是半圆时,如图3所示,3圆柱侧面积体积公式(1)圆柱的侧面积公式S侧=2rh(2)圆柱的表面积公式:S表=S底2+S侧=2r2+2r h4.圆锥侧面积体积公式(1)圆锥侧面积计算公式从右图中可以看出,圆锥的母线。
5、首 页 末 页 第二部分第二部分 图形与几何图形与几何 第九章第九章 圆圆 考考 点点 管管 理理 中中 考考 再再 现现 课课 时时 作作 业业 归归 类类 探探 究究 第第3131课时课时 弧长及扇形的面积,圆锥的侧面积和全面积弧长及扇。
6、 第 31 课时 弧长及扇形的面积,圆锥的侧面积和全面积 (68 分) 一、选择题(每题 5 分,共 30 分) 12019温州若扇形的圆心角为 90,半径为 6,则该扇形的弧长为( ) A.3 2 B2 C3 D6 2 2019 云南一个圆锥的侧面展开图是半径为 8 的半圆, 则该圆锥的全面积是( ) A48 B45 C36 D32 32019遂宁如图,ABC内接于O,若A45,O的半径r4,则。
7、24.4 弧长和扇形面积一选择题(共 20 小题)1(2018盘锦)如图,一段公路的转弯处是一段圆弧( ),则 的展直长度为( )A3 B6 C9 D122(2018黄石)如图,AB 是O 的直径,点 D 为O 上一点,且ABD=30,BO=4,则的长为( )A B C2 D3(2018广安)如图,已知O 的半径是 2,点 A、B、C 在O 上,若四边形 OABC 为菱形,则图中阴影部分面积为( )A 2 B C 2 D 4(2018自贡)已知圆锥的侧面积是 8cm 2,若圆锥底面半径为 R(cm),母线长为l(cm),则 R 关于 l 的函数图象大致是( )A B C D5(2018德州)如图,从一块直径为 2m 的圆形铁皮上剪。
8、 弧长及扇形的面积 第17讲 适用学科 初中数学 适用年级 初中三年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.弧长公式 2.扇形面积公式 3.利用扇形面积公式求不规则图形的面积 教学目标 1.掌握弧长的求解方法 2.掌握扇形的面积公式及应用 教学重点 能熟练掌握弧长及扇形的面积的求解方法 教学难点 能熟练掌握弧长及扇形的面积的求解方法 【教学建议】【教学建议。
9、弧长和扇形的面积,观察:制造弯形管道时,经常要先按中心线计算“展直长度”(图中虚线的长度),再下料,这就涉及到计算弧长的问题,(1)半径为R的圆,周长是多少?,C=2R,(3)1圆心角所对弧长是多少?,(2)圆的周长可以看作是多少度的圆心角所对的弧?,n,A,B,O,若设O半径为R, n的圆心角所对的弧长为 ,则,探索研究 1,360,(4)n圆心角所对弧长是多少?,n,试一试,1.已知弧所对的圆心角为900,半径是4,则弧长为_2. 已知一条弧的半径为9,弧长为8 ,那么这条弧所对的圆心角为_。 3. 钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转。
10、3.9 弧长及扇形的面积,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,1.理解弧长和扇形面积公式的探求过程.(难点) 2.会利用弧长和扇形面积的计算公式进行计算. (重点),学习目标,问题1 你注意到了吗,在运动会的4100米比赛中,各选手的起跑线不再同一处,你知道这是为什么吗?,问题2 怎样来计算弯道的“展直长度”?,因为要保证这些弯道的“展直长度”是一样的.,导入新课,(1)半径为R的圆,周长是多少?,(2)1的圆心角所对弧长是多少?,n,O,(4) n的圆心角所对弧长l是多少?,1,C=2R,(3)n圆心角所对的弧长是1圆心角所对的弧长的多少倍?,。
11、第 1 页(共 20 页)2019 年人教版九年级上24.4 弧长和扇形面积同步练习卷一选择题(共 12 小题)1一个圆锥高为 4,母线长为 5,则这个圆锥的侧面积为( )A15 B12 C25 D202如图,四边形 ABCD 是O 的内接四边形,O 的半径为 4,B135,则劣弧 AC的长是( )A4 B2 C D3如图物体由两个圆锥组成其主视图中,A90,ABC105,若上面圆锥的侧面积为 1,则下面圆锥的侧面积为( )A2 B C D4如图,在ABC 中,AB 6,将ABC 绕点 A 通时针旋转 40后得到ADE,点 B 经过的路径为 ,则图中阴影部分的面积是( )A BC4 D条件不足,无法计算5如图,在矩形 ABC。
12、第 1 页(共 32 页)2019 年人教版九年级上24.4 弧长和扇形面积同步练习卷一选择题(共 9 小题)1如图,正方形 ABCD 的边 AB1, 和 都是以 1 为半径的圆弧,则无阴影两部分的面积之差是( )A B1 C 1 D12如图,AB 为O 的切线,切点为 B,连接 AO,AO 与O 交于点 C,BD 为O 的直径,连接 CD若A30,O 的半径为 2,则图中阴影部分的面积为( )A B 2 C D 3如图,在ABC 中,CACB ,ACB 90,AB2,点 D 为 AB 的中点,以点 D 为圆心作圆心角为 90的扇形 DEF,点 C 恰在弧 EF 上,则图中阴影部分的面积为( )A B C D4如图,半径为 2cm,圆心角为。
13、24.4 弧长和扇形面积 第1课时,1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力 2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力,在田径二百米跑比赛中,每位运动员的起跑位置相同吗?每位运动员弯路的展直长度相同吗?,(1)半径为R的圆,周长是多少?,C=2R,(3)1圆心角所对弧长是多少?,(4)140圆心角所对的弧长是多少?,(2)圆的周长可以看作是多少度的圆心角所对的弧?,n,A,B,O,若设O半径为R,n的圆心角 所对的弧长为,【例1】制造弯形管道时,要先按中心线计算“展直长 度”,再下料,。
14、24.4 弧长和扇形面积 第2课时,1.了解圆锥母线的概念,理解圆锥侧面积计算公式, 理解圆锥全面积的计算方法,并会应用公式解决问题 2.探索圆锥侧面积和全面积的计算公式并应用它解决 现实生活中的一些实际问题,认识圆锥:生活中的圆锥,圆锥可以看做是一个直角三 角形绕它的一条直角边旋转 一周所成的图形.,O,A,B,C,圆锥知识知多少?,母线,高,底面半径,底面,侧面,B,O,根据图形,圆锥的底面半径、母线及其高有什么数量关系?,设圆锥的底面半径为r,母线长为l,高为h,则有:,l 2r2+h2.,即:OA2+OB2=AB2,如图,设圆锥的母线长为l,底面半径为r, (1。
15、人教版数学九年级上册 24.4 弧长和扇形面积同步练习一选择题(共 5 小题)1如图,一段公路的转弯处是一段圆弧( ),则的展直长度为( )A3 B6 C9 D122如图,ABC 中,D 为 BC 的中点,以 D 为圆心,BD长为半径画一弧交 AC 于 E 点,若A=60,B=100,BC=4,则扇形 BDE 的面积为何?( )A B C D3如图,AB 为半圆 O 的直径,C 为 AO 的中点,CDAB 交半圆于点 D,以 C 为圆心,CD 为半径画弧交AB 于 E 点,若 AB=4,则图中阴影部分的面积是( )A B C D4圆锥的底面直径是 80cm,母线长 90cm,则它的侧面积是( )A360cm 2 B720cm 2 C1800cm 2 。
16、24.4 弧长和扇形面积第 1 课时 弧长和扇形面积01 基础题知识点 1 弧长公式及应用1(岳阳中考)已知扇形的圆心角为 60,半径为 1,则扇形的弧长为(D)A. B C. D.2 6 32(衡阳中考)圆心角为 120,弧长为 12 的扇形的半径为 (C)A6 B9 C18 D363(自贡中考)一个扇形的半径为 8 cm,弧长为 cm,则扇形的圆心角为(B)163A60 B120 C150 D1804(兰州中考)如图,用一个半径为 5 cm 的定滑轮带动重物上升,滑轮上一点 P 旋转了108,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了(C)A cm 。
17、1人教版数学九年级上册 24.4弧长和扇形的面积1、选择题1、如图,扇形纸扇完全打开后,外侧两竹条 夹角为 , 的长为 ,贴纸部分 的长为,则贴纸部分的面积为( )A B C D2、如图所示,O 是以坐标原点 O 为圆心,4 为半径的圆,点 P 的坐标为( , ),弦AB 经过点 P,则图中阴影部分面积的最小值等于( )A24 B48 C D3、如图所示,在扇形 BAD 中,点 C 在 上,且BDC=30,AB=2 ,BAD=105,过点 C作 CEAD,则图中阴影部分的面积为( )A2 B1 C22 D2+14、如图,在ABCD 中,AD=2,AB=4,A=30,以点 A 为圆心,AD 的长为半径画弧交 AB 于点 E,。
18、3.8 弧长及扇形的面积(弧长及扇形的面积(1) 西气东输工程全长四千多米西气东输工程全长四千多米,其其 中有成千上万个中有成千上万个圆弧形圆弧形弯管弯管.制作制作 弯管时,需要先按中心线计算弯管时,需要先按中心线计算 “展直长度”再下料“展直长度”再下料.你会计算管你会计算管 道的长度吗?道的长度吗? r o 圆的周长公式圆的周长公式 C=2r 回顾探究 那么能否根据圆的周长公式去发现圆的。
19、,苏科数学,2.7 弧长及扇形的面积,29中致远 曹霞,请你想一想,什么是弧?什么是扇形?请画图说明.,如下图,由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形,O,B,A,圆心角,请你想一想,在田径二百米跑比赛中,每位运动员的起跑位置相同吗?每位运动员弯路的展直长度相同吗?,请你想一想,1如果圆形跑道的半径是36米,圆心角是180,那么半圆形跑道长是多少呢?,2如果将1中的圆心角变成是90、60,那么所对应的弧长分别是多少呢?,3已知O半径为R,求n圆心角所对弧长,请你想一想,已知O半径为R ,圆心角是1的扇形面积是多少?,已知O半径为R。