弧长扇形面积公式

专题26 与弧长、扇形面积有关的问题 专题知识回顾 1.扇形弧长面积公式 (1)弧长的计算公式 (2)扇形面积计算公式 2.弓形的面积 (1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。 (2)弓形的周长弦长弧长 (3)弓形的面积 当弓形所含的弧是劣弧时,如图1所示,

弧长扇形面积公式Tag内容描述:

1、专题26 与弧长、扇形面积有关的问题 专题知识回顾 1.扇形弧长面积公式(1)弧长的计算公式(2)扇形面积计算公式2.弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。(2)弓形的周长弦长弧长(3)弓形的面积当弓形所含的弧是劣弧时,如图1所示, 当弓形所含的弧是优弧时,如图2所示,当弓形所含的弧是半圆时,如图3所示,3圆柱侧面积体积公式(1)圆柱的侧面积公式S侧=2rh(2)圆柱的表面积公式:S表=S底2+S侧=2r2+2r h4.圆锥侧面积体积公式(1)圆锥侧面积计算公式从右图中可以看出,圆锥的母线。

2、专题26 与弧长、扇形面积有关的问题 专题知识回顾 1.扇形弧长面积公式(1)弧长的计算公式(2)扇形面积计算公式2.弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。(2)弓形的周长弦长弧长(3)弓形的面积当弓形所含的弧是劣弧时,如图1所示, 当弓形所含的弧是优弧时,如图2所示,当弓形所含的弧是半圆时,如图3所示,3圆柱侧面积体积公式(1)圆柱的侧面积公式S侧=2rh(2)圆柱的表面积公式:S表=S底2+S侧=2r2+2r h4.圆锥侧面积体积公式(1)圆锥侧面积计算公式从右图中可以看出,圆锥的母线。

3、 弧长及扇形的面积 第17讲 适用学科 初中数学 适用年级 初中三年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.弧长公式 2.扇形面积公式 3.利用扇形面积公式求不规则图形的面积 教学目标 1.掌握弧长的求解方法 2.掌握扇形的面积公式及应用 教学重点 能熟练掌握弧长及扇形的面积的求解方法 教学难点 能熟练掌握弧长及扇形的面积的求解方法 【教学建议】【教学建议。

4、24.4 弧长和扇形面积,第二十四章 圆,导入新课,讲授新课,当堂练习,课堂小结,第1课时 弧长和扇形面积,学习目标,1.理解弧长和扇形面积公式的探求过程.(难点) 2.会利用弧长和扇形面积的计算公式进行计算. (重点),导入新课,图片欣赏,问题1 如图,在运动会的4100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?,问题2 怎样来计算弯道的“展直长度”?,因为要保证这些弯道的“展直长度”是一样的.,导入新课,讲授新课,问题1 半径为R的圆,周长是多少?,问题2 下图中各圆心角所对的弧长分别是圆周长的几分之几?,合作探。

5、弧长和扇形面积,第二十四章 圆,如图,O的半径为R,求它的周长C,复习,周长:C=2R,或C =d,制弯形管道时, 经常按中心线计算 “展直长度”, 再下料, 如图.(单位:mm),导入,这涉及到什么问题?,一、 如图,在半径为R的O中。,探究,360的圆心角所对的弧长是 ;,二、 如图,在半径为R的O中。,探究,1的圆心角所对的弧长是 ;,A,二、 如图,在半径为R的O中。,探究,50的圆心角所对的弧长是 ;,A,B,50,三、 如图,在半径为R的O中。,探究,100的圆心角所对的弧长是 ;,A,B,100,三、 如图,在半径为R的O中。,探究,n的圆心角所对的弧长是 .,A,B,n,归纳,弧长。

6、课时训练(三十三) 弧长和扇形面积(限时:40 分钟)|考场过关 |1.在圆心角为 120的扇形 AOB 中,半径 OA=6 cm,则扇形 AOB 的面积是 ( )A.6 cm2 B.8 cm2 C.12 cm2 D.24 cm22.如图 K33-1,AB 为O 的直径,点 C 在O 上,若OCA=50,AB=4,则弧 BC 的长为 ( )图 K33-1A. B. C. D.103 109 59 5183.2017淄博 如图 K33-2,半圆的直径 BC 恰与等腰直角三角形 ABC 的一条直角边完全重合,若 BC=4,则图中阴影部分的面积是 ( )图 K33-2A.2+ B.2+2 C.4+ D.2+44.2018益阳 如图 K33-3,正方形 ABCD 内接于圆 O,AB=4,则图中阴影部分的面积是 ( )图 K33-3A.4-16 B.8-16C。

7、24.4 弧长和扇形面积 第2课时,1.了解圆锥母线的概念,理解圆锥侧面积计算公式, 理解圆锥全面积的计算方法,并会应用公式解决问题 2.探索圆锥侧面积和全面积的计算公式并应用它解决 现实生活中的一些实际问题,认识圆锥:生活中的圆锥,圆锥可以看做是一个直角三 角形绕它的一条直角边旋转 一周所成的图形.,O,A,B,C,圆锥知识知多少?,母线,高,底面半径,底面,侧面,B,O,根据图形,圆锥的底面半径、母线及其高有什么数量关系?,设圆锥的底面半径为r,母线长为l,高为h,则有:,l 2r2+h2.,即:OA2+OB2=AB2,如图,设圆锥的母线长为l,底面半径为r, (1。

8、24.4 弧长和扇形面积 第1课时,1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力 2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力,在田径二百米跑比赛中,每位运动员的起跑位置相同吗?每位运动员弯路的展直长度相同吗?,(1)半径为R的圆,周长是多少?,C=2R,(3)1圆心角所对弧长是多少?,(4)140圆心角所对的弧长是多少?,(2)圆的周长可以看作是多少度的圆心角所对的弧?,n,A,B,O,若设O半径为R,n的圆心角 所对的弧长为,【例1】制造弯形管道时,要先按中心线计算“展直长 度”,再下料,。

9、3.9 弧长及扇形的面积,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,1.理解弧长和扇形面积公式的探求过程.(难点) 2.会利用弧长和扇形面积的计算公式进行计算. (重点),学习目标,问题1 你注意到了吗,在运动会的4100米比赛中,各选手的起跑线不再同一处,你知道这是为什么吗?,问题2 怎样来计算弯道的“展直长度”?,因为要保证这些弯道的“展直长度”是一样的.,导入新课,(1)半径为R的圆,周长是多少?,(2)1的圆心角所对弧长是多少?,n,O,(4) n的圆心角所对弧长l是多少?,1,C=2R,(3)n圆心角所对的弧长是1圆心角所对的弧长的多少倍?,。

10、弧长和扇形的面积,观察:制造弯形管道时,经常要先按中心线计算“展直长度”(图中虚线的长度),再下料,这就涉及到计算弧长的问题,(1)半径为R的圆,周长是多少?,C=2R,(3)1圆心角所对弧长是多少?,(2)圆的周长可以看作是多少度的圆心角所对的弧?,n,A,B,O,若设O半径为R, n的圆心角所对的弧长为 ,则,探索研究 1,360,(4)n圆心角所对弧长是多少?,n,试一试,1.已知弧所对的圆心角为900,半径是4,则弧长为_2. 已知一条弧的半径为9,弧长为8 ,那么这条弧所对的圆心角为_。 3. 钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转。

11、24.7 弧长与扇形的面积随堂检测1把一只折扇展开成一个扇形,它的圆心角为120,半径为6,则这个扇形的弧长为 2朝阳市第三中学要修建一个圆心角为60,半径为12米的扇形投掷场地,则该扇形场地的面积约为 米2 (取314,结果精确到01米2 )3如图,某传送带的一个转动轮的半径为20cm,当物体从A传送4cm至B时,那么这个转动轮转了_度(取314,结果保留四个有效数字)4如图,在ABC中,ACB=90,B=25,以C为圆心,CA为半径的圆交AB于D,若AC=6,则的长为 5. 已知一个扇形的圆心角为60,半径为5,则扇形的周长为( )A B C D典例分析如图,PA切O于点A,PO。

12、人教版数学九年级上册 24.4 弧长和扇形面积同步练习一选择题(共 5 小题)1如图,一段公路的转弯处是一段圆弧( ),则的展直长度为( )A3 B6 C9 D122如图,ABC 中,D 为 BC 的中点,以 D 为圆心,BD长为半径画一弧交 AC 于 E 点,若A=60,B=100,BC=4,则扇形 BDE 的面积为何?( )A B C D3如图,AB 为半圆 O 的直径,C 为 AO 的中点,CDAB 交半圆于点 D,以 C 为圆心,CD 为半径画弧交AB 于 E 点,若 AB=4,则图中阴影部分的面积是( )A B C D4圆锥的底面直径是 80cm,母线长 90cm,则它的侧面积是( )A360cm 2 B720cm 2 C1800cm 2 。

13、1人教版数学九年级上册 24.4弧长和扇形的面积1、选择题1、如图,扇形纸扇完全打开后,外侧两竹条 夹角为 , 的长为 ,贴纸部分 的长为,则贴纸部分的面积为( )A B C D2、如图所示,O 是以坐标原点 O 为圆心,4 为半径的圆,点 P 的坐标为( , ),弦AB 经过点 P,则图中阴影部分面积的最小值等于( )A24 B48 C D3、如图所示,在扇形 BAD 中,点 C 在 上,且BDC=30,AB=2 ,BAD=105,过点 C作 CEAD,则图中阴影部分的面积为( )A2 B1 C22 D2+14、如图,在ABCD 中,AD=2,AB=4,A=30,以点 A 为圆心,AD 的长为半径画弧交 AB 于点 E,。

14、24.4 弧长和扇形面积第 1 课时 弧长和扇形面积01 基础题知识点 1 弧长公式及应用1(岳阳中考)已知扇形的圆心角为 60,半径为 1,则扇形的弧长为(D)A. B C. D.2 6 32(衡阳中考)圆心角为 120,弧长为 12 的扇形的半径为 (C)A6 B9 C18 D363(自贡中考)一个扇形的半径为 8 cm,弧长为 cm,则扇形的圆心角为(B)163A60 B120 C150 D1804(兰州中考)如图,用一个半径为 5 cm 的定滑轮带动重物上升,滑轮上一点 P 旋转了108,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了(C)A cm 。

15、,导入新课,讲授新课,当堂练习,课堂小结,24.7 弧长与扇形面积,第1课时 弧长与扇形面积,第24章 圆,学习目标,1. 理解弧长和扇形面积公式的探求过程.(难点) 2. 会利用弧长和扇形面积的计算公式进行计算.(重点),如图,在运动会的4100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?,怎样来计算弯道的“展直长度”?,因为要保证这些弯道的“展直长度”是一样的.,导入新课,讲授新课,问题1 半径为R的圆,周长是多少?,问题2 下图中各圆心角所对的弧长分别是圆周长的几分之几?,观察与思考,(1) 圆心角是180,占整个周角。

16、28.5 弧长和扇形面积的计算弧长和扇形面积的计算 学习目标:学习目标: 1.理解并掌握扇形的弧长的计算公式并会进行计算. 2.理解并掌握扇形的面积的计算公式并会进行计算. 3 能够根据圆锥侧面展开图进行相关计算. 学习重点:学习重点:扇形。

17、3.8 弧长及扇形的面积(弧长及扇形的面积(1) 西气东输工程全长四千多米西气东输工程全长四千多米,其其 中有成千上万个中有成千上万个圆弧形圆弧形弯管弯管.制作制作 弯管时,需要先按中心线计算弯管时,需要先按中心线计算 “展直长度”再下料“展直长度”再下料.你会计算管你会计算管 道的长度吗?道的长度吗? r o 圆的周长公式圆的周长公式 C=2r 回顾探究 那么能否根据圆的周长公式去发现圆的。

18、,苏科数学,2.7 弧长及扇形的面积,29中致远 曹霞,请你想一想,什么是弧?什么是扇形?请画图说明.,如下图,由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形,O,B,A,圆心角,请你想一想,在田径二百米跑比赛中,每位运动员的起跑位置相同吗?每位运动员弯路的展直长度相同吗?,请你想一想,1如果圆形跑道的半径是36米,圆心角是180,那么半圆形跑道长是多少呢?,2如果将1中的圆心角变成是90、60,那么所对应的弧长分别是多少呢?,3已知O半径为R,求n圆心角所对弧长,请你想一想,已知O半径为R ,圆心角是1的扇形面积是多少?,已知O半径为R。

19、24.424.4 弧长和扇形面积弧长和扇形面积 第一课时第一课时 教学目标教学目标 一一 知识与技能知识与技能 1经历探索弧长计算公式及扇形面积计算公式的过程; 2了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题 二二 过程与方法过。

【弧长扇形面积公式】相关PPT文档
【弧长扇形面积公式】相关DOC文档
标签 > 弧长扇形面积公式[编号:192014]