第二篇 函数及其性质 专题2.01函数的概念 【考试要求】 1.了解构成函数的要素,能求简单函数的定义域; 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用; 3.通过具体实例,了解简单的分段函数,并能简单应用. 【知识梳理】 1.函数的概念
2020年高考数学一轮复习Tag内容描述:
1、第二篇 函数及其性质专题2.01函数的概念【考试要求】1.了解构成函数的要素,能求简单函数的定义域;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用;3.通过具体实例,了解简单的分段函数,并能简单应用.【知识梳理】1.函数的概念设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数,记作yf(x),xA.2.函数的定义域、值域(1)在函数yf(x),xA中,x叫做自变量,x的。
2、第八篇 平面解析几何专题8.01直线与方程【考试要求】1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.【知识梳理】1.直线的倾斜角(1)定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角;(2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为0;(3)范围:直线的倾斜角的取值范围是0,).2.。
3、第一篇 集合与不等式专题1.02常用逻辑用语【考试要求】1.通过对典型数学命题的梳理,理解必要条件的意义,理解性质定理与必要条件的关系;理解充分条件的意义,理解判定定理与充分条件的关系;理解充要条件的意义,理解数学定义与充要条件的关系;2.通过已知的数学实例,理解全称量词与存在量词的意义;3.能正确使用存在量词对全称命题进行否定;能正确使用全称量词对特称命题进行否定.【知识梳理】1.充分条件、必要条件与充要条件的概念若pq,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件pq且qpp是q的必要不充分条件pq且qpp是q。
4、第十篇 计数原理、概率、随机变量及其分布专题10.02排列与组合【考试要求】1、理解排列、组合的概念;2、能利用计数原理推导排列数公式、组合数公式.【知识梳理】1.排列与组合的概念名称定义排列从n个不同元素中取出m(mn)个不同元素按照一定的顺序排成一列组合合成一组2.排列数与组合数(1)从n个不同元素中取出m(mn)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.(2)从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.3.排列数、组合数的公式及性质公式(1)An(n1)(n2)(n。
5、第二篇 函数及其性质专题2.07函数的图象【考试要求】1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;2.会运用基本初等函数的图象分析函数的性质,解决方程解的个数与不等式解的问题.【知识梳理】1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换yf(x)的图象yf(x)的图象;yf(x)。
6、第二篇 函数及其性质专题2.08函数与方程【考试要求】1.结合学过的函数图象,了解函数零点与方程解的关系;2.结合具体连续函数及其图象的特点,了解函数零点存在定理【知识梳理】1.函数的零点(1)函数零点的概念对于函数yf(x),把使f(x)0的实数x叫做函数yf(x)的零点.(2)函数零点与方程根的关系方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.(3)零点存在性定理如果函数yf(x)满足:在区间a,b上的图象是连续不断的一条曲线;f(a)f(b)0)的图象与零点的关系b24ac000)的图象与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点。
7、第十篇 计数原理、概率、随机变量及其分布专题10.05古典概型【考试要求】1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率.【知识梳理】1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每一个试验结果出现的可能性相同.3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么。
8、第八篇 平面解析几何专题8.03圆与方程【考试要求】掌握确定圆的几何要素,掌握圆的标准方程与一般方程.【知识梳理】1.圆的定义和圆的方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(xa)2(yb)2r2(r0)圆心C(a,b)半径为r一般x2y2DxEyF0(D2E24F0)充要条件:D2E24F0圆心坐标:半径r2.点与圆的位置关系平面上的一点M(x0,y0)与圆C:(xa)2(yb)2r2之间存在着下列关系:(1)|MC|rM在圆外,即(x0a)2(y0b)2r2M在圆外;(2)|MC|rM在圆上,即(x0a)2(y0b)2r2M在圆上;(3)|MC|rM在圆内,即(x0a)2(y0b)2r2M在圆内.【微点提醒】1.圆心在坐标原。
9、第二篇 函数及其性质专题2.09函数与数学模型【考试要求】1.理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具.在实际情境中,会选择合适的函数类型刻画现实问题的变化规律;2.结合现实情境中的具体问题,利用计算工具,比较对数函数、一元一次函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义;3.收集、阅读一些现实生活、生产实际或者经济领域中的数学模型,体会人们是如何借助函数刻画实际问题的,感悟数学模型中参数的现实意义.【知识梳理】1.指数、对数、幂函数模型性质比较。
10、第十篇 计数原理、概率、随机变量及其分布专题10.05古典概型【考试要求】1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率.【知识梳理】1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每一个试验结果出现的可能性相同.3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么。
11、第二篇 函数及其性质专题2.07函数的图象【考试要求】1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;2.会运用基本初等函数的图象分析函数的性质,解决方程解的个数与不等式解的问题.【知识梳理】1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换yf(x)的图象yf(x)的图象;yf(x)。
12、第二篇 函数及其性质专题2.01函数的概念【考试要求】1.了解构成函数的要素,能求简单函数的定义域;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用;3.通过具体实例,了解简单的分段函数,并能简单应用.【知识梳理】1.函数的概念设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数,记作yf(x),xA.2.函数的定义域、值域(1)在函数yf(x),xA中,x叫做自变量,x的。
13、第八篇 平面解析几何专题8.01直线与方程【考试要求】1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.【知识梳理】1.直线的倾斜角(1)定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角;(2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为0;(3)范围:直线的倾斜角的取值范围是0,).2.。
14、第一篇 集合与不等式专题1.02常用逻辑用语【考试要求】1.通过对典型数学命题的梳理,理解必要条件的意义,理解性质定理与必要条件的关系;理解充分条件的意义,理解判定定理与充分条件的关系;理解充要条件的意义,理解数学定义与充要条件的关系;2.通过已知的数学实例,理解全称量词与存在量词的意义;3.能正确使用存在量词对全称命题进行否定;能正确使用全称量词对特称命题进行否定.【知识梳理】1.充分条件、必要条件与充要条件的概念若pq,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件pq且qpp是q的必要不充分条件pq且qpp是q。
15、第八篇 平面解析几何专题8.03圆与方程【考试要求】掌握确定圆的几何要素,掌握圆的标准方程与一般方程.【知识梳理】1.圆的定义和圆的方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(xa)2(yb)2r2(r0)圆心C(a,b)半径为r一般x2y2DxEyF0(D2E24F0)充要条件:D2E24F0圆心坐标:半径r2.点与圆的位置关系平面上的一点M(x0,y0)与圆C:(xa)2(yb)2r2之间存在着下列关系:(1)|MC|rM在圆外,即(x0a)2(y0b)2r2M在圆外;(2)|MC|rM在圆上,即(x0a)2(y0b)2r2M在圆上;(3)|MC|rM在圆内,即(x0a)2(y0b)2r2M在圆内.【微点提醒】1.圆心在坐标原。
16、第十篇 计数原理、概率、随机变量及其分布专题10.02排列与组合【考试要求】1、理解排列、组合的概念;2、能利用计数原理推导排列数公式、组合数公式.【知识梳理】1.排列与组合的概念名称定义排列从n个不同元素中取出m(mn)个不同元素按照一定的顺序排成一列组合合成一组2.排列数与组合数(1)从n个不同元素中取出m(mn)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.(2)从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.3.排列数、组合数的公式及性质公式(1)An(n1)(n2)(n。
17、第六章 数列2022年高考一轮数学单元复习新高考专用第I卷选择题一单选题1设函数,是公差为的等差数列,则ABCD答案D详解数列an是公差为的等差数列,且 即 得点评本题难度较大,综合性很强.突出考查了等差数列性质和三角函数性质的综合使用,需。
18、第一篇 集合与不等式专题1.01 集合【考纲要求】1.通过实例了解集合的含义,理解元素与集合的属于关系;针对具体问题能在自然语言、图形语言的基础上,用符号语言刻画集合;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,能求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,能求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算,体会图形对理解抽象概念的作用.【知识梳理】1.元素与集合(1)集合中元素的三个特。
19、第六篇 平面向量与复数专题6.04复数【考试要求】1.通过方程的解,认识复数;2.理解复数的代数表示及其几何意义,理解两个复数相等的含义;3.掌握复数代数表示式的四则运算,了解复数加、减运算的几何意义.【知识梳理】1.复数的有关概念内容意义备注复数的概念形如abi(aR,bR)的数叫复数,其中实部为a,虚部为b若b0,则abi为实数;若a0且b0,则abi为纯虚数复数相等abicdiac且bd(a,b,c,dR)共轭复数abi与cdi共轭ac且bd(a,b,c,dR)复平面建立平面直角坐标系来表示复数的平面叫做复平面,x轴叫实轴,y轴叫虚轴实轴上的点都表示实数;除了。
20、第一篇 集合与不等式专题1.01 集合【考纲要求】1.通过实例了解集合的含义,理解元素与集合的属于关系;针对具体问题能在自然语言、图形语言的基础上,用符号语言刻画集合;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,能求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,能求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算,体会图形对理解抽象概念的作用.【知识梳理】1.元素与集合(1)集合中元素的三个特。