专题10.2 排列与组合 2020年高考数学一轮复习对点提分(文理科通用)(原卷版)

上传人:hua****011 文档编号:95135 上传时间:2019-10-29 格式:DOC 页数:10 大小:45KB
下载 相关 举报
专题10.2 排列与组合 2020年高考数学一轮复习对点提分(文理科通用)(原卷版)_第1页
第1页 / 共10页
专题10.2 排列与组合 2020年高考数学一轮复习对点提分(文理科通用)(原卷版)_第2页
第2页 / 共10页
专题10.2 排列与组合 2020年高考数学一轮复习对点提分(文理科通用)(原卷版)_第3页
第3页 / 共10页
专题10.2 排列与组合 2020年高考数学一轮复习对点提分(文理科通用)(原卷版)_第4页
第4页 / 共10页
专题10.2 排列与组合 2020年高考数学一轮复习对点提分(文理科通用)(原卷版)_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、第十篇 计数原理、概率、随机变量及其分布专题10.02排列与组合【考试要求】1、理解排列、组合的概念;2、能利用计数原理推导排列数公式、组合数公式.【知识梳理】1.排列与组合的概念名称定义排列从n个不同元素中取出m(mn)个不同元素按照一定的顺序排成一列组合合成一组2.排列数与组合数(1)从n个不同元素中取出m(mn)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.(2)从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.3.排列数、组合数的公式及性质公式(1)An(n1)(n2)(nm1).(2)C(n,mN*,且mn).

2、特别地C1性质(1)0!1;An!. (2)CC;CCC【微点提醒】1.解受条件限制的排列、组合题,通常有直接法(合理分类)和间接法(排除法).分类时标准应统一,避免出现重复或遗漏.2.对于分配问题,一般先分组,再分配,注意平均分组与不平均分组的区别,避免重复或遗漏.【疑误辨析】1.判断下列结论正误(在括号内打“”或“”)(1)所有元素完全相同的两个排列为相同排列.()(2)一个组合中取出的元素讲究元素的先后顺序.()(3)若组合式CC,则xm成立.()(4)(n1)!n!nn!.()(5)kCnC.()【教材衍化】2.(选修23P18例3改编)从4本不同的课外读物中,买3本送给3名同每人各1

3、本,则不同的送法种数是()A.12 B.24 C.64 D.813.(选修23P26知识改编)计算CCCC的值为_(用数字作答).【考题体验】4.(2019济宁质检)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.245.(一题多解)(2018全国卷)从2位女生、4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_种(用数字作答).6.(2018浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成_个没有重复数字的四位数(用数字作答).【考点聚焦】考点一排列问题【例1】 有3名男生、4名女

4、生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,女生必须站在一起;(4)全体排成一排,男生互不相邻;(5)(一题多解)全体排成一排,其中甲不站最左边,也不站最右边;(6)(一题多解)全体排成一排,其中甲不站最左边,乙不站最右边.【规律方法】排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是

5、解决有限制条件的排列问题的常用方法.【训练1】 (2019天津和平区二模)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为()A.120 B.240 C.360 D.480考点二组合问题【例2】 某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少

6、种?【规律方法】组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.【训练2】 (1)(一题多解)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为()A.14 B.24 C.28 D.48(2)(2019杭州二模)若从

7、1,2,3,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种 B.63种 C.65种 D.66种考点三分组、分配问题【例3】 (1)国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教,现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有_种不同的分派方法.(2)(2019西安月考)某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有()A.80种 B.90种 C.120种 D.150种(3)A,B,C,D,E,F六人围坐在一张圆桌上开会,A是会议的中心发言人,

8、必须坐最北面的椅子,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的坐法有()A.24种 B.30种 C.48种 D.60种【规律方法】1.对于整体均分问题,往往是先分组再排列,在解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A(n为均分的组数),避免重复计数.2.对于部分均分问题,解题时要注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!.3.对于不等分问题,首先要对分配数量的可能情形进行一一列举,然后再对每一种情形分类讨论.在每一类的计数中,又要考虑是分步计数还是分类计数,是排列问题还是组合问题.【训练3】 (1)(2

9、017全国卷)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种 B.18种 C.24种 D.36种(2)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_种(用数字作答).【反思与感悟】1.对于有附加条件的排列、组合应用题,通常从三个途径考虑(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.2.排列、组合问题的求解方法与技巧(1)特殊元素优

10、先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题倍除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.【易错防范】1.区分一个问题属于排列问题还是组合问题,关键在于是否与顺序有关.如果与顺序有关,则是排列;如果与顺序无关,则是组合.2.解组合应用题时,应注意“至少”、“至多”、“恰好”等词的含义.【分层训练】【基础巩固题组】(建议用时:35分钟)一、选择题1.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为()A.8 B.24 C.48

11、D.1202.不等式A6A的解集为()A.2,8 B.2,6 C.7,12 D.83.从6本不同的书中选出4本,分别发给4个同已知其中两本书不能发给甲同则不同分配方法有()A.180种 B.220种 C.240种 D.260种4.(一题多解)从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A.18 B.24 C.30 D.365.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg alg b的不同值的个数是()A.9 B.10 C.18 D.206.10名同学合影,站成了前排3人,后排7人,现摄影师要从后排7人中抽2人站前排,其他人的相

12、对顺序不变,则不同调整方法的种数为()A.CA B.CA C.CA D.CA7.(2019济南模拟)有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种 B.48种 C.96种 D.144种8.福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有()A.90种 B.180种 C.270种 D.360种二、填空题9.从6名同学中选派4人分别参加数物理、化生物四科知识竞赛,若其中甲、乙两名同学不能参加生物竞赛,则选派方案共有_种(用数字作答).10.已知,则m_.11.在一展览会

13、上,要展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该次展出这5件作品不同的摆放方案共有_种(用数字作答).12.(2019烟台模拟)某班主任准备请2019届毕业生做报告,要从甲、乙等8人中选4人发言,要求甲、乙两人至少一人参加,若甲、乙同时参加,则他们发言中间需恰隔一人,那么不同的发言顺序共有_种(用数字作答).【能力提升题组】(建议用时:15分钟)13.甲、乙、丙、丁四位同学高考之后计划去A,B,C三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A社区

14、, 乙不去B社区,则不同的安排方法种数为()A.8 B.7 C.6 D.514.(2019天津和平区一模)把8个相同的小球全部放入编号为1,2,3,4的四个盒中,则不同的放法种数为()A.35 B.70 C.165 D.1 86015.(2019江西八所重点中学模拟)摄像师要对已坐定一排照像的5位小朋友的座位顺序进行调整,要求其中恰有2人座位不调整,则不同的调整方案的种数为_(用数字作答).16.设集合A(x1,x2,x3,x4,x5)|xi1,0,1,i1,2,3,4,5,那么集合A中满足条件“1|x1|x2|x3|x4|x5|3”的元素有_个(用数字作答).【新高考创新预测】17.(多填题)将甲、乙等5位同学分别保送到北京大上海交通大浙江大学三所大学就读,每所大学至少保送一人.(1)有_种不同的保送方法;(2)若甲不能被保送到北大,有_种不同的保送方法.10

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 数学高考 > 试题汇编