2020广西中考数学一轮复习课件第15讲 反比例函数

1,第13讲 函数的概念及其图象,一、函数的定义 1. 常量与变量:在某一变化过程中,数值始终不变的量叫做_,数值变化的量叫做_ 2. 函数:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有_确定的值与其对应,那么就说_是自变量,_是_的函数 注意:如果xa时,yb,那么b

2020广西中考数学一轮复习课件第15讲 反比例函数Tag内容描述:

1、1,第13讲 函数的概念及其图象,一、函数的定义 1. 常量与变量:在某一变化过程中,数值始终不变的量叫做_,数值变化的量叫做_ 2. 函数:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有_确定的值与其对应,那么就说_是自变量,_是_的函数 注意:如果xa时,yb,那么b叫做当自变量的值为a时的_,常量,变量,唯一,x,y,x,函数值,3. 自变量的取值范围 当函数关系由代数解析式表达时: (1)若为整式,则自变量取_; (2)若为分式,则自变量取使_的实数; (3)若为二次根式,则自变量取使被开方式_的实数; (4)当函数关系式由。

2、1,第14讲 一次函数,一、正比例函数和一次函数及其性质,二、一次函数ykxb的图象的画法 根据几何知识:两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可一般情况下:正比例函数ykx(k是常数,k0)的图象选取(_,_)、(_,_)来画;一次函数ykxb(k,b是常数,k0),选取它与两坐 标轴的交点: 、(0,b)(即横坐标或纵坐标 为0的点)来画,0,0,1,k,三、直线yk1xb1(k10)与yk2xb2(k20)的位置关系 1两直线平行k1k2且b1b2. 2两直线相交k1k2. 3两直线重合k1k2且b1b2. 4两直线垂直k1k21.,四、用待定系数法确定一次函数解析式的一。

3、,第3课时 反比例函数,考点突破,3,中考特训,4,广东中考,5,课前小测,A,D,课前小测,A,A,课前小测,D,课前小测,4,知识精点,知识点一:反比例函数的解析式,2利用待定系数法确定反比例函数解析式:,知识精点,知识点二:反比例函数的图像与性质,减小,增大,知识精点,考点突破,考点一:反比例函数的解析式、图像与性质,(1)求这个函数的解析式;,考点突破,(2)判断点B(1,6),C(3,2)是否在这个函数 的图象上,并说明理由;,(3)当3x1时,求y的取值范围,当x3时,y2,当x1时,y6,又k0,当x0时,y随x的增大而减小,当3x1时,6y2.,考点突破,(1)将点A的坐。

4、第12课时 反比例函数及其应用 课标要求 1.结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式. 3.能用反比例函数解决简单实际问题. 2.能画出反比例函数的图象,根据图象和表达式 y= (k0)探索并理解 k0和 k0时,y随 x的增大而增大 D.当 x0时,y随 x的增大而减小 C 2.2020 德州函数 y= 和 y=-kx+2(k0)在同一平面直角坐标系中的大。

5、一次函数与反比例函数巩固练习一次函数与反比例函数巩固练习 一选择题(共一选择题(共 13 小题)小题) 1若直线 ymx3 和 y2x+n 相交于点 P(2,3) ,则方程组的解为( ) A B C D 2定义:x表示不超过实数 x 的最大整数例如:1.71,0,23根据你学习函数的经 验,下列关于函数 yx的判断中,正确的是( ) A函数 yx的定义域是一切整数 B函数 yx的图象是经过原点的一。

6、第 11 讲 反比例函数A 组 基础题组一、选择题1.已知点 A(-1,1)是反比例函数 y= 的图象上一点,则 m 的值为( )+1A.-1 B.-2 C.0 D.12.(2017 四川自贡)一次函数 y1=k1x+b 和反比例函数 y2= (k1k20)的2图象如图所示,若 y1y2,则 x 的取值范围是( )A.-21 B.-21 D.xy20C.y2y106.若式子 有意义,则函数 y=kx+1 和 y= 的图象可能是( )1- 2-17.(2017 云南)如图,A,B 两点在反比例函数 y= 的图象上,C,D 两点1在反比例函数 y= 的图象上 ,ACy 轴于点 E,BDy 轴于点2F,AC=2,BD=1,EF=3,则 k1-k2的值是( )A.6 B.4 C.3 D.28.(2017 广东)如图所示,在同一平面直角。

7、第3讲,反比例函数,第三章 函数及其图象,2020年广东中考复习课件,2.能画出反比例函数的图象,根据图象和表达式y(k0),1.结合具体情境体会反比例函数的意义,能根据已知条件,确定反比例函数表达式.,k x,探索并理解k0 或k0 时,图象的变化情况.,3.能用反比例函数解决某些实际问题.,1.(2018 年广西柳州)已知反比例函数的解析式为 y,|a|2 x,,,则实数 a 的取值范围是(,),A.a2,B.a2,C.a2,D.a2,答案:C 自变量 x 的取值范围是_. 答案:2x0,2.(2017年广西南宁)对于函数y ,当函数值y1时,,图 3-3-1,答案:62,图 3-3-2,A.1,B.2,C.4,D.无法计算,答案。

8、第一部分第三章第3讲1(2019哈尔滨)点(1,4)在反比例函数y的图象上,则下列各点在此函数图象上的是(A)A(4,1)BC(4,1)D2(2018沈阳)点A(3,2)在反比例函数y(k0)的图象上,则k的值是(A)A6BC1D63(2018大庆)在同一直角坐标系中,函数y和ykx3的图象大致是(B)A B C D4(2019广州)若点A(1,y1),B(2,y2),C(3,y3)在反比例函数y的图象上,则y1,y2,y3的大小关系是(C)Ay3y2y1By2y1y3Cy1y3y2Dy1y2y35(2019深圳)如图,在RtABC中,ABC90,C(0,3),CD3AD,点A在y上,且y轴平分ACB,则k.6(2018邵阳)如图所示,点A是反比例函数y图象上一点,作ABx轴,。

9、第11讲 反比例函数,总纲目录,泰安考情分析,基础知识过关,知识点一 反比例函数的定义一般地,形如 y= (k0)的函数叫做反比例函数,其中k为反比例函数的系数. 温馨提示 (1)y= (k0)可变形为k=xy(k0),用此式可直接求出k的值,得到反比例函数的解析式; (2)y= (k0)可变形为y=kx-1(k0),特别值得注意的是自变量x的指数为-1; (3)对于反比例函数y= ,需要满足k0,x0,y0.,知识点二 反比例函数的图象和性质 1.反比例函数的图象:反比例函数y= (k0)的图象是 双曲线 ,因为x0,所以y0,所以反比例函数的图象无限接近x轴和y轴,但不会与x轴、y轴相交.,2.反比例函数的。

10、第11讲 反比例函数,反比例函数的有关概念,不等于0,1.反比例函数 形如 (k是常数,k0)的函数叫做反比例函数.反比例函数中,自变量的取值范围是 的一切实数. 2.反比例函数的表达式的三种形式 (1)y= (k0,k为常数); (2)y= (k0,k为常数); (3)xy= (k0,k为常数),kx-1,k,反比例函数的图象与性质,双曲线,原点,一、三,减小,二、四,增大,|k|,求反比例函数关系式的方法步骤,2.代入图象上一个点的坐标,即x,y的一对对应值,求出k的值. 3.写出关系式.,反比例函数与一次函数的图象交点的求法,反比例函数的应用,应用反比例函数解决实际生活中成反比例关系的问题。

11、学科教师辅导讲义学员编号: 年 级:中考一轮复习课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第07讲-反比例函数授课类型T同步课堂P实战演练S归纳总结教学目标 理解反比例函数的定义,熟练利用待定系数法求解表达式; 熟练掌握反比例函数的图像与性质; 掌握反比例函数与一次函数的相关应用,学会利用函数图像解决问题; 掌握系数K的几何意义并解决问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一)反比例与反比例函数1、成反比例的关系式不一定是反比例函数,但是反比例函数中的两个。

12、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第07讲-反比例函数授课类型T同步课堂P实战演练S归纳总结教学目标 理解反比例函数的定义,熟练利用待定系数法求解表达式; 熟练掌握反比例函数的图像与性质; 掌握反比例函数与一次函数的相关应用,学会利用函数图像解决问题; 掌握系数K的几何意义并解决问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一)反比例与反比例函数1、成反比例的关系式不一定是反比例函数,但是反比例函数中的两个。

13、学科教师辅导讲义学员编号: 年 级:中考一轮复习课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第07讲-反比例函数授课类型T同步课堂P实战演练S归纳总结教学目标 理解反比例函数的定义,熟练利用待定系数法求解表达式; 熟练掌握反比例函数的图像与性质; 掌握反比例函数与一次函数的相关应用,学会利用函数图像解决问题; 掌握系数K的几何意义并解决问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一)反比例与反比例函数1、成反比例的关系式不一定是反比例函数,但是反比例函数中的两个。

14、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第07讲-反比例函数授课类型T同步课堂P实战演练S归纳总结教学目标 理解反比例函数的定义,熟练利用待定系数法求解表达式; 熟练掌握反比例函数的图像与性质; 掌握反比例函数与一次函数的相关应用,学会利用函数图像解决问题; 掌握系数K的几何意义并解决问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一)反比例与反比例函数1、成反比例的关系式不一定是反比例函数,但是反比例函数中的两个。

15、第三章 函数,第一部分 基础过关,第3讲 反比例函数,3,考情通览,4,5,知识梳理,要点回顾,6,6,即时演练,3,7,2反比例函数的图象和性质 (1)图象特征:由两条曲线组成,叫做双曲线;两个分支都无限接近x、y轴,但都不会与x轴和y轴相交;以原点为对称中心的中心对称图形 (2)图象和性质列表如下:,要点回顾,8,9,一,即时演练,(2,5),k2,k4,10,命题揭秘,A,11,D,12,【思路点拨】通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其他选项做出判断,得出答案,D,13,A,14,15,【思路点拨】(1)将点A的坐标。

16、 第15讲 反比例函数1(2019天门)反比例函数y,下列说法不正确的是(D)A图象经过点(1,3)B图象位于第二、四象限C图象关于直线yx对称Dy随x的增大而增大2. 如果反比例函数y的图象经过,则k的值是(D)A2 B2 C3 D33. 双曲线y与直线y2x1的一个交点的横坐标为1,则k的值为(C)A1 B2 C1 D24. 已知点A(x1,y1),B(x2,y2)是反比例函数y(k0)图象上的两点,若x10x2,则有(A)Ay10y2 By20y1 Cy1y20 Dy2y105. 若反比例函数y(2m1)xm22的图象在。

17、1,第15讲 反比例函数,一、定义 若两个变量x,y之间可以表示成y_(k是常数,且k0),则称y是x的反比例函数 二、图象 反比例函数y (k0)的图象是_,它有两个 分支,这两个分支分别位于第_象限或第_象限它们是一个中心对称图形,其对称中心是_ 注意:反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,双曲线,一和三,二和四,原点,三、性质 1.当k0时,x,y同号,图象分布在第_象限,在每个象限内y随x的增大而_ 2.当k0,其图象只有位于第一(或第四)象限的一支曲线.,一和三,减小,二和四,增大,(2019柳。

【2020广西中考数学一轮复习】相关PPT文档
【2020广西中考数学一轮复习】相关DOC文档
【2020广西中考数学一轮复习】相关其他文档
标签 > 2020广西中考数学一轮复习课件第15讲 反比例函数[编号:126985]